基于智能理论的交通流量组合预测模型研究
[Abstract]:With the development of the social economy and the progress of science and technology, the demand for traffic travel is increasing, the number of motor vehicles is increasing. The rapid growth of motor vehicles leads to traffic congestion, road safety, environmental pollution, energy consumption and so on. A large number of practical experiences show that the intelligent transportation system is changed. The traffic condition of the city and the most effective means to improve the service quality of the public transportation are of great significance both in the ecological environment and from the socioeconomic point of view. Traffic flow forecast is the precondition and key of the realization of intelligent traffic. How to accurately predict the traffic information has become a hot spot of research by the scholars. The quantity is influenced by a variety of random interference factors and has a certain randomness and dynamics, so the traffic volume prediction is very complicated. Although many scholars have studied it in depth and achieved some results, the research on traffic flow prediction theory has not formed a more mature and complete theoretical system, which is to be selected in the end. Some prediction models and which methods to be improved is still a problem that is still worth studying. In this paper, based on the intelligent prediction theory, in order to improve the prediction accuracy of traffic traffic, the effective combination form between different intelligent methods and models is discussed, and the research work of.1. is mainly involved in the following aspects. On the basis of DGM (1,1) in grey system theory, two combination forecasting models of DGM-GRNN and DGM-SVM are proposed. The grey system GM is a prediction model often used in the case of small sample and poor information. The existing grey combination models are mostly composed of GM (1,1) and BP neural network. Because GM (1,1) does not consider the possible future The influence of the interfering factors on the system is not suitable for medium and long term prediction, and the DGM (1,1) model improves the conventional GM (1,1) model in discrete form, and makes up for the defects of the traditional GM (1,1) model. In addition, the BP network is easy to fall into the local minimum, and the result of the calculation is more random. So two kinds of residual correction are proposed in this paper. The DGM model is used to predict the original data sequence using the DGM (1,1) model. Then, the GRNN and SVM models are used to train the residual sequence of the tail section and obtain the prediction sequence of the residual difference. Finally, the final prediction results are synthesized. In the actual traffic flow prediction experiment, the comparison with the traditional GM (1,1) and DGM (1,1) is made. The combined model proposed in this paper has improved the accuracy of prediction, and validates the effectiveness of the combined model.2.. The support vector machine SVM prediction model based on particle swarm optimization (PSO) optimization is based on the statistical theory and the principle of structural risk minimization, which can be classified and predicted in a small sample learning environment. It is an intelligent model, which is an intelligent model. In this paper, the influence of different parameters on the system prediction in SVM is discussed, and two kinds of PSO-LSSVM and SMOSVM traffic prediction models based on particle swarm optimization are proposed based on LSSVM and SMOSVM, which are based on LSSVM and SMOSVM. Firstly, the C and kernel width of penalty parameters are applied to the C and kernel width of the penalty parameters. Optimization, determine the optimal C and sigma, and then use SMOSVM and LSSVM to predict traffic flow through cross validation respectively. Through comparison and analysis experiments with the model optimized by the trial and the grid method, the proposed model has better prediction performance, which shows that it can effectively predict the change of real-time traffic flow. The potential.3. proposed the limit learning machine prediction model based on the genetic algorithm optimization GA-ELM.BP neural network consumed a lot of time in the process of training and adjusting the various parameters, while the limit learning machine ELM greatly shortened the network training time and did not reduce the convergence energy of the network.ELM randomly set the input layer and the hidden layer. In the training process, the values of these parameters are no longer adjusted in the training process, so the validity of the hidden layer nodes should be improved. Under the condition of the network structure, the genetic algorithm is applied to the selection of the weight and threshold of the limit learning machine, and the use of the target function is obtained. Better weights and thresholds make the connection weight matrix between the hidden layer and the output layer more reasonable. By comparing with the BP model, the GA-BP model and the standard ELM model experiment, it is further verified that the advantages of the model proposed in this paper are time series, neural network and grey theory in the prediction accuracy and running time. Traffic flow forecasting model of combination of fixed weight and indefinite right. At present, statistical theory, nonlinear theory and intelligent theory have different applications in traffic flow. All kinds of single models have certain advantages, but there are some one-sided. In order to make use of the information provided by all kinds of prediction models, this paper is based on traffic flow prediction. Based on the commonly used GM (1,1), ARIMA and GRNN models, a combination prediction model of the fixed weight coefficient and a variable weight coefficient is proposed. After the definition of the quasi prediction absolute error is put forward, the fixed weight combination model and the Elman variable weight combination model based on the relative error are established respectively. The experimental results show that the combined model is especially variable. The weight coefficient combination model is superior to the single model or two model combinations in relative error, root mean square error and equal coefficient, thus validates its effectiveness and feasibility.5. comprehensive comparison and analysis of various combination forecasting models. The innovation of this model is mainly embodied in the use of the effective combination of intelligent models to predict the traffic flow. The residual correction of the DGM model by using GRNN and SVM is used to further improve the prediction accuracy of the model. The bionics particle swarm optimization and genetic algorithm are used for SVM and ELM respectively. The model parameters are optimized effectively, and the model has better prediction effect. The combination of weight and Elman based on GM, ARIMA and GRNN is proposed. The experimental results show that the combined model can obtain better performance evaluation index. In summary, the results of this paper have a definite theoretical and application value for more accurate delivery. Flow prediction provides new ideas and new ways.
【学位授予单位】:东北师范大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:U491.14
【相似文献】
相关期刊论文 前10条
1 文军;蒋由辉;方文清;;航空货运量的优化组合预测模型[J];计算机工程与应用;2010年15期
2 黄元生;黎特;皮薇;;非平均权重条件下电力负荷组合预测模型研究[J];山东电力高等专科学校学报;2013年03期
3 丁岳维;组合预测模型的研究[J];西安公路交通大学学报;1997年04期
4 朱章;对组合预测模型预测精度的分析[J];黄石高等专科学校学报;1997年01期
5 邢棉;能源发展趋势的非线性优化组合预测模型研究[J];华北电力大学学报;2002年03期
6 陈华友,赵佳宝,刘春林;基于灰色关联度的组合预测模型的性质[J];东南大学学报(自然科学版);2004年01期
7 李眉眉;丁晶;衡彤;覃光华;;电力月负荷的混沌趋势组合模型预测[J];四川电力技术;2006年03期
8 张欣;;组合预测模型在上海内河港口吞吐量预测中的应用[J];水运工程;2007年04期
9 王斌;张金隆;;航线流量组合预测模型研究[J];武汉理工大学学报(信息与管理工程版);2008年03期
10 赵海青,杨秀岐;灰色加法组合预测模型及其应用[J];保定师范专科学校学报;2002年04期
相关会议论文 前10条
1 谢如贤;成盛超;程仕军;陈思华;;变结构组合预测模型的建立与应用[A];全国青年管理科学与系统科学论文集(第2卷)[C];1993年
2 董景荣;;基于遗传辅助设计的汇率组合预测模型研究[A];面向复杂系统的管理理论与信息系统技术学术会议专辑[C];2000年
3 马永开;唐小我;;组合预测模型研究[A];管理科学与系统科学进展——全国青年管理科学与系统科学论文集(第4卷)[C];1997年
4 成枢;刘国林;高放;;最优组合预测模型及其在变形预测中的应用[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
5 何迎东;吴婉莹;郭u&;陈华友;;基于离消度的组合预测模型及其应用[A];第十届中国不确定系统年会、第十四届中国青年信息与管理学者大会论文集[C];2012年
6 陈华友;程蕾;张倩;;基于相关系数的IOWA算子最优组合预测模型[A];第四届中国不确定系统年会论文集[C];2006年
7 陈华友;;IOWA算子的组合预测模型及在所得税预测中的应用[A];第三届不确定系统年会论文集[C];2005年
8 谢正文;孔凡玉;胡毅夫;;基于熵权的沉降组合预测模型及应用[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(下册)[C];2006年
9 王永光;赵国浩;;变权组合预测模型在中国煤炭需求预测中的应用[A];2007中国可持续发展论坛暨中国可持续发展学术年会论文集(4)[C];2007年
10 王尚俊;吴刚;陈华友;周礼刚;;基于广义10WA算子的组合预测模型及在卷烟消费需求中应用[A];第十一届中国不确定系统年会、第十五届中国青年信息与管理学者大会论文集[C];2013年
相关博士学位论文 前5条
1 赵川;重载交通对高速公路桥梁的疲劳影响研究[D];河北工业大学;2015年
2 于志恒;基于智能理论的交通流量组合预测模型研究[D];东北师范大学;2016年
3 向昌盛;基于支持向量机的时间序列组合预测模型[D];湖南农业大学;2011年
4 万玉成;基于未确知性的预测与决策方法及其应用研究[D];东南大学;2004年
5 南晓强;风电预测技术及其运行分析[D];西南交通大学;2013年
相关硕士学位论文 前10条
1 秦成;我国城市生活垃圾处理现状及清运量预测研究[D];天津财经大学;2015年
2 王海军;基于组合预测模型的我国石油供需预测研究[D];中国石油大学(华东);2014年
3 刘源;EMD组合预测模型IMF分量选取的改进[D];太原理工大学;2016年
4 吴少华;组合预测模型及其在变形分析中的应用研究[D];东华理工大学;2016年
5 朱家明;几种基于模糊信息集成算子的组合预测模型及其应用[D];安徽大学;2016年
6 孟玲玲;基于支持向量机的组合预测模型及其应用研究[D];河南理工大学;2015年
7 潘志刚;基于深度学习网络的风电场功率预测研究及应用[D];上海电机学院;2016年
8 周发仁;多方法组合预测模型应用研究[D];中国地震局地震预测研究所;2016年
9 尤志敏;组合预测方法在上市公司财务风险预警中的研究与应用[D];东北大学;2011年
10 靳运章;我国煤矿事故特征规律及组合预测模型研究[D];西安科技大学;2016年
,本文编号:2155670
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2155670.html