基于CCD数据的太湖蓝藻水华监测算法研究
[Abstract]:In recent years, with the rapid development of industry and agriculture in China, a large number of industrial, agricultural sewage and domestic wastewater containing nitrogen, phosphorus and other elements have been discharged into rivers and lakes, resulting in serious eutrophication of lakes in China. Especially the middle and lower reaches of the Yangtze River lakes, such as: Taihu Lake, Chaohu Lake. Every year, in summer and autumn, these lakes will break out serious cyanobacteria Shui Hua. Cyanobacteria Shui Hua directly affects human health, economic development and ecological balance. In this paper, the relative radiation correction of CCD data of different images is carried out by means of automatic control of scatter point regression (ASCR), which is based on the CCD data of the environment satellite made in China. Combining normalized vegetation index (NDVI) with pixel growth algorithm (APA), a high precision extraction algorithm for cyanobacteria Shui Hua is proposed. The algorithm is applied to the newly launched Gaofen 1 satellite and the American land Landsat satellite. Through the research of this paper, the following conclusions can be drawn: (1) the CCD image after relative radiation correction is obtained by automatic control scatter point regression method, and the correction result is satisfactory. Making the radiation values of relatively stable objects of the same name consistent in different phase images, Therefore, the dynamic changes of cyanobacteria Shui Hua in Taihu Lake were monitored by the difference of radiation values in different phase images. (2) the blue algae Shui Hua in Taihu Lake region was preliminarily extracted by using NDVI index. Then the threshold value of each scene image is ascertained by slope analysis method, and then a unified blue algae Shui Hua extraction threshold is determined by using statistical analysis method, which solves the problem of one threshold value of a scene image in the past. It is difficult to solve the problem of large-scale batch processing. (3) the pixel growth algorithm is used to decompose the pixel linearly, and the extraction precision can reach sub-pixel level. More accurate statistics on the area and distribution of cyanobacteria Shui Hua in Taihu Lake were made. (4) continuous monitoring of a long-term series of outbreaks of cyanobacteria from Lake Taihu in the second half of 2009-2014 was carried out. It is found that the outbreak area of cyanobacteria Shui Hua in Taihu Lake in 2013-2014 is smaller than that in the past, and the water quality has been controlled and improved. The results also show that the algorithm has strong recognition ability to cyanobacteria Shui Hua, high degree of automation and extraction accuracy of Shui Hua, and can be used as an algorithm for operational operation. (5) comparing with the new CCD sensor launched by China's high score 1 satellite, And the Landsat sensors of the United States, they are found to be highly correlated with the environmental satellite CCD sensors. Therefore, the algorithm is applied to the Gaofen 1 satellite data and the Landsat series data of the United States. Based on the environmental satellite CCD data, the relative radiometric correction of other image data is carried out. Finally, real-time dynamic monitoring of cyanobacteria Shui Hua in Taihu Lake with longer time series and higher time resolution is realized by using multi-satellite platform.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X87
【相似文献】
相关期刊论文 前10条
1 武胜利;刘诚;孙军;李三妹;李亚军;孔期;;卫星遥感太湖蓝藻水华分布及其气象影响要素分析[J];气象;2009年01期
2 王成林;潘维玉;韩月琪;钱新;;全球气候变化对太湖蓝藻水华发展演变的影响[J];中国环境科学;2010年06期
3 刘聚涛;杨永生;高俊峰;姜加虎;;太湖蓝藻水华分级及其时空变化[J];长江流域资源与环境;2011年02期
4 马荣华;孔繁翔;段洪涛;张寿选;孔维娟;郝景燕;;基于卫星遥感的太湖蓝藻水华时空分布规律认识[J];湖泊科学;2008年06期
5 ;太湖蓝藻水华发生不可避免科学应对无需惊慌[J];海河水利;2008年02期
6 孙伟华;刘锐;陈吕军;张永明;;太湖蓝藻水华成因及防治对策研究[J];中国建设信息(水工业市场);2009年06期
7 王u!;江南;胡斌;魏清宇;胡显志;;太湖蓝藻水华遥感动态监测信息系统设计与实现[J];测绘科学;2010年02期
8 王成林;陈黎明;潘维玉;钱新;;适宜太湖蓝藻水华形成的风场辐散特征及其形成机制[J];中国环境科学;2010年09期
9 李旭文;牛志春;姜晟;;Landsat5 TM遥感影像上太湖蓝藻水华反射光谱特征研究[J];环境监测管理与技术;2010年06期
10 刘聚涛;杨永生;姜加虎;高俊峰;;太湖蓝藻水华灾害风险分区评估方法研究[J];中国环境科学;2011年03期
相关会议论文 前8条
1 陈中峗;黄玲琳;;降水对太湖蓝藻水华发生的影响[A];第26届中国气象学会年会农业气象防灾减灾与粮食安全分会场论文集[C];2009年
2 祝令亚;孙珂;王冠珠;;环境减灾卫星在太湖蓝藻水华监测中的应用[A];第十七届中国遥感大会摘要集[C];2010年
3 韩秀珍;刘诚;李三妹;李亚君;武胜利;刘征;崔晓平;孙军;孔期;宋艳玲;;卫星遥感近年来太湖蓝藻水华时空分布及变化特点分析[A];中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集[C];2008年
4 武胜利;韩秀珍;孙凌;李亚君;李三妹;赵洪淼;刘诚;朱小祥;赵长海;孙涵;马瑞升;曹云;朱玮;钱培东;杨金彪;朱莲芳;;基于实地光谱测量的卫星遥感太湖蓝藻水华密度估算方法[A];中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集[C];2008年
5 朱冰川;黄君;宋挺;吴蔚;张军毅;;太湖蓝藻水华种类及其演替规律研究[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
6 周全;陈伟;万能;宋立荣;;太湖蓝藻水华早期暴发特性及监测指标[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年
7 黄君;宋挺;严飞;;MODIS数据在太湖蓝藻水华分布规律分析中的应用研究[A];2013中国环境科学学会学术年会论文集(第四卷)[C];2013年
8 翁建中;王亚超;;萤光技术在太湖蓝藻水华预警监测中的应用[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
相关重要报纸文章 前3条
1 潘加保;卫星遥感监测太湖蓝藻水华[N];中国测绘报;2007年
2 凌军辉;专家解释太湖蓝藻水华生成机制[N];中国改革报;2008年
3 潘加保 陶海林;遥感技术成功用于太湖蓝藻水华动态监测预警[N];中国测绘报;2009年
相关硕士学位论文 前5条
1 吕凯;太湖蓝藻水华的遥感监测预警研究[D];中国地质大学(北京);2015年
2 佴兆骏;基于CCD数据的太湖蓝藻水华监测算法研究[D];西安科技大学;2016年
3 杨婷;气象因子与太湖蓝藻水华的响应关系研究[D];南京信息工程大学;2012年
4 温新龙;太湖蓝藻水华遥感监测及风场对其分布的影响研究[D];南京信息工程大学;2014年
5 项文华;基于辐射传输模拟的太湖蓝藻水华遥感识别模式研究[D];南京大学;2012年
,本文编号:2328179
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2328179.html