城市轨道交通交流供电方案探讨
[Abstract]:At present, domestic trunk railways generally use single-phase AC power supply with power frequency, and urban rail transit uses low-voltage DC power supply. However, the stray currents generated by DC system will cause serious corrosion to underground metal pipelines and so on. And the current protective measures are costly, the effect is not outstanding, may cause serious consequences. In principle, the stray current can be eliminated, but in practice it is almost impossible. But the single-phase AC power supply system of power frequency will not produce the electrochemical reaction similar to the DC power supply system, the catenary voltage grade is high, the power supply ability is strong, and the distance between traction substations is small. Therefore, it is necessary to study the power supply of single-phase AC power supply for urban rail transit. This power supply mode adopts 35kV cable and is matched with appropriate voltage grade of contact network. This paper presents a negative sequence reactive power compensation scheme for this power supply mode. In this paper, two power frequency single-phase AC power supply systems are presented, one is centralized and the other is decentralized. Centralized power supply means that traction power supply and power lighting power supply are independent of each other, and decentralized power supply means that traction and power lighting share 35kV three-phase cables, which affect each other and are not independent. The centralized and decentralized modes are not only distinguished from the power supply modes, but also refer to the compensation modes corresponding to the two power supply modes, which are explained in detail in this paper. For different power supply modes, the corresponding compensation scheme is put forward. Both of the two compensation schemes adopt single-phase combined in-phase power supply device. For the centralized type, the negative sequence caused by the locomotive is centralized compensated by the same phase power supply compensator in the main substation. Because the locomotive used is a direct AC locomotive with a power factor of 0.98 / 1, it has met the requirements of the national standard. There is no need to compensate the locomotive for reactive power. For reactive power caused by power lighting, SVC reactive power compensator is installed on the low-voltage side of three-phase power transformer in the main station to compensate reactive power centrally. For the distributed type, the in-phase compensation device is installed in each traction substation to compensate the negative sequence caused by the locomotive, and the negative sequence caused by the single-phase electric load in the power lighting should be considered at the same time. The reactive power caused by power lighting is also compensated by the in-phase compensator. Since the reactive power compensation is on the low-voltage side of 35k.V/400V and the power measurement point is on the high-voltage side of 110kV (or 220kV), it is necessary to consider the case of cable reactive power reflux. Then the two compensation schemes are compared in theory and economy. Firstly, the investment of centralized power frequency single-phase AC power supply scheme and existing DC power supply system is compared, and then the centralized AC power supply compensation scheme and the decentralized AC power supply compensation scheme are compared. The compensation capacity and the investment of the equipment are compared based on the actual circuit. Finally, combined with the theory and economy, it is concluded that the centralized single-phase AC power supply scheme and the corresponding compensation scheme are better.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U223
【参考文献】
相关期刊论文 前10条
1 李维时;庞传贵;张龙;王晋恒;;对民用建筑电气设计一些问题的建议[J];建筑电气;2016年01期
2 周伟志;;城市轨道交通供电系统无功补偿容量分析[J];机车电传动;2015年04期
3 李群湛;;城市轨道交通交流牵引供电系统及其关键技术[J];西南交通大学学报;2015年02期
4 齐凯;;天津地铁5号线车站动力照明设计方案研究[J];中国高新技术企业;2015年09期
5 张凉永;;高速铁路全电缆电力贯通线的电容电流及其容性无功补偿分析[J];高速铁路技术;2015年01期
6 夏付炳;;探讨城市轨道交通供电系统无功补偿方式[J];中国新技术新产品;2015年03期
7 李强;吴命利;;交流传动机车与直流传动机车混合运用条件下牵引网电压控制技术[J];铁道学报;2014年08期
8 解绍锋;李群湛;;平衡接线牵引变压器同相供电下的容量设计方法[J];西南交通大学学报;2014年04期
9 李群湛;;论新一代牵引供电系统及其关键技术[J];西南交通大学学报;2014年04期
10 郭尽朝;;同相供电技术在神朔铁路的应用前景研究[J];机车电传动;2013年04期
相关博士学位论文 前2条
1 赵彦灵;电气化铁路同相供电装置关键技术研究[D];西南交通大学;2012年
2 万庆祝;牵引供电系统负序问题研究[D];清华大学;2008年
相关硕士学位论文 前10条
1 蓝波;电气化铁路新型电缆牵引供电技术方案研究[D];西南交通大学;2015年
2 尚国旭;新建高速铁路同相供电方案研究[D];西南交通大学;2015年
3 陈明亮;组合式同相供电系统技术经济性研究[D];西南交通大学;2015年
4 徐浩;组合式同相供电系统可靠性研究[D];西南交通大学;2015年
5 刘洋;组合式同相供电设计方法研究[D];西南交通大学;2014年
6 钱洁;电力电缆电气参数及电气特性研究[D];浙江大学;2013年
7 冷寒;地铁供电系统谐波电流和无功功率综合治理方案[D];西南交通大学;2012年
8 隋佳斌;SVG技术在城市轨道交通领域的应用研究[D];华南理工大学;2012年
9 张丽艳;基于系统潮流的牵引变电所综合补偿方案研究[D];西南交通大学;2006年
10 刘炜;城市轨道交通供电系统仿真[D];西南交通大学;2006年
,本文编号:2408647
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2408647.html