当前位置:主页 > 科技论文 > 材料论文 >

材料基因组技术内涵与发展趋势

发布时间:2016-08-31 06:01

  本文关键词:材料基因组框架下的材料集成设计及信息平台初探,,由笔耕文化传播整理发布。


[1] CHRISTODOULOU J A. Integrated computational materials engineering and materials genome initiative:accelerating materials innovation[J]. Advanced Materials & Processes, 2013, 171(3):28-31.

[2] De PABLO J J, JONES B, KOVACS C L, et al. The materials genome initiative, the interplay of experiment, theory and computation[J]. Current Opinion in Solid State and Materials Science, 2014, 18(2):99-117.

[3] OLSON G. Genomic materials design:the ferrous frontier[J]. Acta Materialia, 2013, 61(3):771-781.

[4] OLSON G, KUEHMANN C. Materials genomics:from CALPHAD to flight[J]. Scripta Materialia, 2014, 70:25-30.

[5] BACKMAN D G, WEI D Y, WHITIS D D, et al. ICME at GE:accelerating the insertion of new materials and processes[J]. JOM, 2006, 58(11):36-41.

[6] GVVENÇ O, ROTERS F, HICKEL T, et al. ICME for crashworthiness of TWIP steels:from ab initio to the crash performance[J]. JOM, 2015, 67(1):120-128.

[7] PANCHAL J H, KALIDINDI S R, McDOWELL D L. Key computational modeling issues in integrated computational materials engineering[J]. Computer-aided Design, 2013, 45(1):4-25.

[8] 刘梓葵. 关于材料基因组的基本观点及展望[J]. 科学通报, 2013, 58(35):3618-3622.(LIU Z K. On the basic principles and future outlook of materials genome initialative[J]. Chinese Science Bulletin, 2013, 58(35):3618-3622.)

[9] CURTAROLO S, SETYAWAN W, WANG S, et al. AFLOWLIB.ORG:a distributed materials properties repository from high-throughput ab initio calculations[J]. Computational Materials Science, 2012, 58:227-235.

[10] 王曦, 汪小我, 王立坤, 等. 新一代高通量 RNA 测序数据的处理与分析[J]. 生物化学与生物物理进展, 2010, 37(8):834-846.(WANG X, WANG X W, WANG L K, et al. Processing and analysis to new generation of high throughput RNA sequencing data[J]. Progress in Biochemistry and Biophysics, 2010, 37(8):834-846.)

[11] 滕晓坤, 肖华胜. 基因芯片与高通量 DNA 测序技术前景分析[J]. 中国科学C辑, 2008, 38(10):891-899.(TENG X K, XIAO H S. Analysis to gene chips and high throughput DNA sequencing technology[J]. Science in China Series C, 2008, 38(10):891-899.)

[12] 杜冠华. 创新药物研究与高通量筛选[J]. 中国新药杂志, 2001, 10(8):561-565.(DU G H. Innovative drug research and high throughput screening[J]. Chinese New Drugs Journal,2001, 10(8):561-565.)

[13] 王卓, 杨小渝, 郑宇飞, 等. 材料基因组框架下的材料集成设计及信息平台初探[J]. 科学通报, 2013, 58(35):3733-3742.(WANG Z, YANG X Y, ZHENG Y F, et al. Integrated design of materials and the information platform under the framework of materials genome initiative[J]. Chinese Science Bulletin, 2013, 58(35):3733-3742.)

[14] CURTAROLO S, HART G L, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3):191-201.

[15] MORINAGA M, YUKAWA N, ADACHI H, et al. New PHACOMP and its application to alloy design[C]//Proceedings of the Fifth International Symposium Superalloy. Warrendale, USA:TMS-AIME, 1984.

[16] CIESLAK M, KNOROVSKY G, HEADLEY T, et al. The use of new PHACOMP in understanding the solidification microstructure of nickel base alloy weld metal[J]. Metallurgical Transactions A, 1986, 17(12):2107-2116.

[17] LUKAS H L, FRIES S G, SUNDMAN B. Computational thermodynamics:the Calphad method[M]. Cambridge:Cambridge University Press, 2007.

[18] SPENCER P. A brief history of CALPHAD[J]. Calphad, 2008, 32(1):1-8.

[19] 苏航, 柴峰, 王卓, 等. CALPHAD热力学计算及其在钢铁新产品研发中的应用[C]//2010中国材料研讨会. 长沙:中国材料研究学会,2010.(SU H, CAI F, WAMG Z, et al. CALPHAD thermodynamic calculation and its application in the research and development of new products of iron and steel[C]//China Materials Conference 2010. Changsha:C-MRS, 2010.)

[20] 王绍青, 叶恒强. 晶体材料基因组问题第一原理计算研究[J]. 科学通报, 2013, 58(35):3623-3632.(WANG S Q, YE H Q. Study on the first principles calculation of the genome of crystal materials[J]. Chinese Science Bulletin, 2013, 58(35):3623-3632.)

[21] ANDERSSON J O, HELANDER T, HÖGLUND L, et al. Thermo-Calc & DICTRA, computational tools for materials science[J]. Calphad, 2002, 26(2):273-312.

[22] BORGENSTAM A, HÖGLUND L, ÅGREN J, et al. DICTRA, a tool for simulation of diffusional transformations in alloys[J]. Journal of Phase Equilibria, 2000, 21(3):269-280.

[23] HAILE J. Molecular dynamics simulation[M]. New York:Wiley, 1992.

[24] NADGORNYI E. Dislocation dynamics and mechanical properties of crystals[J]. Progress in Materials Science, 1988, 31:1-530.

[25] DUNNE F, KIWANUKA R, WILKINSON A. Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density[C]//Proceedings of the Proc R Soc A, London:TRS, 2012.

[26] FURRER D U. Application of phase-field modeling to industrial materials and manufacturing processes[J]. Current Opinion in Solid State and Materials Science, 2011, 15(3):134-140.

[27] 赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58(35):3647-3655.(ZHAO J C. High throughput experimental methods in materials genome project[J]. Chinese Science Bulletin, 2013, 58(35):3647-3655.)

[28] XIANG X D. Combinatorial materials synthesis and screening:an integrated materials chip approach to discovery and optimization of functional materials[J]. Annual Review of Materials Science, 1999, 29(1):149-171.

[29] XIANG X D, TAKEUCHI I. Combinatorial materials synthesis[M]. Bocal Raton:CRC Press, 2003.

[30] ZHAO J C. A combinatorial approach for structural materials[J]. Advanced Engineering Materials, 2001, 3(3):143-147.

[31] ZHAO J C. A combinatorial approach for efficient mapping of phase diagrams and properties[J]. Journal of Materials Research, 2001, 16(6):1565-1578.

[32] RAJAN K. Combinatorial materials sciences:experimental strategies for accelerated knowledge discovery[J]. Annu Rev Mater Res, 2008, 38:299-322.

[33] LUDWIG A, CAO J, BRUGGER J, et al. MEMS tools for combinatorial materials processing and high-throughput characterization[J]. Measurement Science and Technology, 2004, 16(1):108-111.

[34] CAWSE J N. Experimental design for combinatorial and high throughput materials development[M]. New York:Wiley-Interscience, 2003.

[35] 高琛, 项晓东, 吴自勤. 发现和优化新材料的集成材料芯片方法[J]. 物理, 1999, 28(11):675-678.(GAO C, XIANG X D, WU Z Q. Discovery and optimazation of novel materials by the integrated material chip approach[J]. Physics,1999, 28(11):675-678.)

[36] 罗岚, 徐政, 许业文, 等. 物理气相法制备材料芯片的发展[J]. 材料导报, 2004, 18(2):69-71.(LUO L, XU Z, XU Y W, et al. Development of the preparation of materials by physical vapor deposition method[J]. Materials Review,2004, 18(2):69-71.)

[37] 刘茜, 陈伟, 刘庆峰, 等. 组合材料芯片技术应用最新进展-新型合金材料的快速发现和优选[J]. 科技导报, 2007, 25(23):64-68.(LIU Q, CHEN W, LIU Q F, et al. Current development of combinational materials approach for fast discovering and screening of new alloy materials[J]. Science & Technology Review,2007, 25(23):64-68.)

[38] 朱丽慧, 朱硕金, 刘茜, 等. 组合材料芯片技术及其在金属材料研究中的应用[J]. 机械工程材料, 2008,32(1):1-4.(ZHU L H, ZHU S J, LIU Q, et al. Application of combinatorial material chip approach to research of metal materials[J]. Materials for Mechanical Engineering, 2008, 32(1):1-4.)

[39] YU H, KANOV K, PERLMAN E, et al. Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database[J]. Journal of Turbulence, 2012, 13:1-12.

[40] KALIDINDI S R, De GRAEF M. Materials data science:current status and future outlook[J]. Annual Review of Materials Research, 2015, 45:171-193.


  本文关键词:材料基因组框架下的材料集成设计及信息平台初探,由笔耕文化传播整理发布。



本文编号:106312

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/106312.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4de80***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com