含微孔洞脆性材料的冲击响应特性与介观演化机制
本文关键词:含微孔洞脆性材料的冲击响应特性与介观演化机制,由笔耕文化传播整理发布。
摘要
微孔洞显著地影响着脆性材料的冲击响应, 理解其介观演化机制和宏观响应规律将使微孔洞有利于而无害于脆性材料的工程应用. 通过建立能够准确表现材料弹性性质和断裂演化的格点-弹簧模型, 本文揭示了孔洞的演化对于脆性材料的影响. 冲击下孔洞导致的塌缩变形和从孔洞发射的剪切裂纹所导致的滑移变形产生了显著的应力松弛, 并调制了冲击波的传播. 在多孔脆性材料中, 冲击波逐渐展宽为弹性波和变形波. 变形波在宏观上类似于延性金属材料的塑性波, 在介观上对应于塌缩变形和滑移变形过程. 样品中的气孔率决定了脆性材料的弹性极限, 气孔率和冲击应力共同影响着变形波的传播速度和冲击终态的应力幅值. 含微孔洞脆性材料在冲击波复杂加载实验、功能材料失效的预防、建筑物防护等方面具有潜在的应用价值. 本文获得的冲击响应规律有助于针对特定应用优化设计脆性材料的冲击响应和动态力学性能.
AbstractMicro-voids significantly affect shock responses of brittle materials. Knowledge about the meso-scale evolution mechanism and macro-scale shock behavior will help to utilize micro-void in applications and avoid its disadvantages. A lattice-spring model, which can represent both elastic property and fracture evolution accurately, is built in this work. Simulations reveal that severe stress relaxation, which is contributed from collapse deformation induced by voids and slippage deformation induced by shear cracks extending from voids, modulates the propagation of shock wave. In a porous brittle material, the shock wave broadens into an elastic wave and a deformation wave. On a macro-scale, the deformation wave behaves as a plastic wave in ductile metal; on a meso-scale, it corresponds to the processes of collapse and slippage deformations. It is found that porosity of the sample determines the Hugoniot elastic limit of material; whereas the porosity and shock stress affect the propagation speed of the deformation wave and stress amplitude in a final state of shock. Brittle materials containing micro-voids have potential applications in complex shock loading experiments, precaution of shock induced function failure, and crashworthiness of buildings. Shock behaviors reported in this work will benefit the design and optimization of shock responses and dynamic mechanical properties of brittle materials used in specific applications.
收稿日期:2014-04-17
基金资助中国工程物理研究院重点实验室专项科研计划(批准号: 2012-专-03)、冲击波物理与爆轰物理重点实验室基金(批准号: 9140C670301120C67248)和国家自然科学基金(批准号: 11272164)资助的课题.
Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C670301120C67248), and the National Natural Science Foundation of China (Grant No. 11272164).
引用本文[中文] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制[J]. 物理学报, 2014, 63(24): 246102. [英文] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids[J]. Acta Phys. Sin., 2014, 63(24): 246102.
使用本文
PDF | 加入我的文献中心
PACS
[1] Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907 [2] Sarac B, Schroers J 2013 Nat. Commun. 4 2158 [3] Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365 [4] Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108 [5] Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7 [6] Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399 [7] Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906 [8] Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501 [9] Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025 [10] Setchell R E 2005 J. Appl. Phys. 97 013507 [11] Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102 [12] Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701] [13] Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201] [14] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101 [15] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202 [16] Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19 [17] Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206 [18] Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188 [19] Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302 [20] Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115 [21] Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805 [22] Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918 [23] Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902 [24] Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485 [25] Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859 [26] Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35 [27] Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905 [28] Yano K, Horie Y 1999 Phys. Rev. B 59 13672 [29] Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003 [30] Gusev A A 2004 Phys. Rev. Lett. 93 034302 [31] Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 物理学报 61 048103] [32] Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第4, 5页] [33] Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309 [34] Grady D E 1998 Mech. Mater. 29 181 [35] Setchell R E 2007 J. Appl. Phys. 101 053525 [36] Setchell R E 2003 J. Appl. Phys. 94 573
数据正在加载中...
本文关键词:含微孔洞脆性材料的冲击响应特性与介观演化机制,由笔耕文化传播整理发布。
,本文编号:132949
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/132949.html