基于Gibson公式修正的蜂窝材料非线性本构
发布时间:2017-12-31 17:47
本文关键词:基于Gibson公式修正的蜂窝材料非线性本构 出处:《重庆大学学报》2016年05期 论文类型:期刊论文
更多相关文章: 等壁厚正六边形蜂窝 Gibson公式 非线性修正因子 数值模拟 弹性大变形本构
【摘要】:Gibson公式由于形式简单而被广泛应用,然而,随着六边形蜂窝材料相对密度和变形程度的增大,Gibson公式将逐渐失效。笔者通过有限元数值模拟,对不同相对密度(细长比)等壁厚正六边形蜂窝材料进行分析。定义了非线性修正因子,由数值结果可知,对于低密度蜂窝结构,非线性因子只与变形程度有关,而与密度本身无关。为此,给出了低密度蜂窝非线性修正因子的一个简便拟合式,得到了低密度蜂窝结构几何非线性本构关系。为了将该本构推广到高密度,引入了另一个非线性修正因子,并给出该非线性因子关于细长比和应变的三次多项式拟合结果,从而建立适用于应变和密度在较大变化范围的等壁厚正六边形蜂窝材料弹性大变形本构关系。该本构参数少、精度高、适用范围广,便于工程应用。此方法还可方便地推广到更一般的六边形蜂窝材料。
[Abstract]:The Gibson formula is widely used due to its simple form, however, with the increase of the relative density of hexagonal honeycombs and deformation degree, the Gibson formula will gradually fail. Through the finite element numerical simulation of different relative density (slenderness ratio) of wall thickness of hexagonal honeycombs. The definition of nonlinear factor, by numerical results for the low density cellular structure, the nonlinear factor is only related with the degree of deformation, and has nothing to do with the density itself. Therefore, a simple formula of low density cellular nonlinear correction factor is given, the low density of honeycomb structure geometric nonlinear constitutive relation. In order to put the constitutive extended to high density, the other a nonlinear correction factor, and the nonlinear factor on the slenderness ratio and strain three polynomial fitting results, so as to establish the suitable strain and density in the larger variable The elastic deformation constitutive relation of hexagonal honeycomb material with equal thickness is equal to the range. The constitutive parameters are few, the accuracy is high, the application scope is wide, and it is convenient for engineering application. This method can also be extended to more general hexagonal honeycomb materials.
【作者单位】: 中山大学工学院应用力学与工程系;
【基金】:国家自然科学基金资助项目(11172334) 广东省自然科学基金资助项目(031552)~~
【分类号】:TB383.4
【正文快照】: 蜂窝材料凭借其优越的性能,在航空航天、机械、交通等诸多领域获得了广泛应用。近几十年来,有关蜂窝材料结构及其力学性能的研究,一直是学者们关注的焦点之一[1]。其中六边形结构作为较常见的蜂窝结构之一,其相关研究也较为充分。在小变形情况下,目前仅能由经典梁理论给出该结,
本文编号:1360826
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1360826.html