基于功能性聚芳醚砜薄膜的电化学电容器
发布时间:2018-01-08 15:19
本文关键词:基于功能性聚芳醚砜薄膜的电化学电容器 出处:《吉林大学》2015年博士论文 论文类型:学位论文
【摘要】:在二十一世纪的今天,能源危机以及环境污染日益严重,环境友好的可再生能源的开发与利用成为了当前形势下最重要的课题。电化学电容器,作为一种新型的储能元件以环境友好、功率密度高、循环寿命长等特点成为当今能源储存元件领域的研究热点。隔膜,电化学电容器的重要组成部分,需要较好的机械强度,良好的热稳定性,和优异的电化学稳定性;与此同时,隔膜需要为电解质离子提供传输通道,保证电化学电容器优异的电化学性能。因此,本论文以综合性能优异的聚芳醚砜树脂为隔膜基体材料通过不同的聚合物薄膜制备技术和聚合物修饰改性方法,制备了功能性聚芳醚砜薄膜,组装了电化学电容器,,系统地研究了隔膜和电化学电容器的相关性能以及构效关系。 首先,以聚醚砜作为基体材料,通过浸没沉淀相转化方法,制备了聚醚砜多孔薄膜,为电解质离子的传输提供了有效的通道,并以聚醚砜多孔膜为隔膜组装了电化学电容器单体器件。研究了聚醚砜多孔膜制备条件对隔膜及电化学电容器性能的影响;得到了综合性能较好的聚醚砜多孔隔膜和电容性能优良的电化学电容器单体器件。但是,多孔膜的高孔隙率对隔膜的机械性能产生较大影响。因此,我们改变膜制备技术,采用流延法制备了致密膜,有效改善了隔膜的机械性能,并通过聚合物修饰改性,进一步地设计制备了具有离子传导能力的季铵功能化的聚芳醚砜基体材料,得到了具有良好电化学性能和出色循环稳定性的隔膜和水相电化学电容器。 其次,为了获得高性能、质轻、小尺寸的固态电化学电容器,在功能化聚芳醚砜的基础上引入高亲水性树脂聚乙烯吡咯烷酮制备了功能性复合膜,并利用氢氧化钾水溶液制备了聚合物电解质,提高了电化学电容器的安全性能,并提升了电化学电容器的比电容和能量密度,同时赋予了电化学电容器优异的循环寿命。 最后,在聚合物电解质中引入氧化还原活性物质,制备了氧化还原聚合物电解质,为电化学电容器提供了额外的法拉第赝电容,进一步提高了电化学电容器的比电容和能量密度。
[Abstract]:In 21th century, the energy crisis and environmental pollution are becoming more and more serious. The development and utilization of environmentally friendly renewable energy has become the most important issue in the current situation. As a new type of energy storage components, environmental friendly, high power density, long cycle life and other characteristics has become the research hotspot in the field of energy storage components, diaphragm, an important component of electrochemical capacitors. Need better mechanical strength, good thermal stability, and excellent electrochemical stability; At the same time, the diaphragm needs to provide transport channels for electrolyte ions to ensure the excellent electrochemical performance of electrochemical capacitors. In this thesis, functional poly (aryl ether sulfone) thin films were prepared by different polymer film preparation techniques and polymer modification methods using poly (aryl ether sulfone) resin as the membrane substrate. Electrochemical capacitors were assembled, and the properties and structure-activity relationships of diaphragm and electrochemical capacitors were systematically studied. Firstly, polyethersulfone (PES) porous films were prepared by immersion precipitation phase transformation method, which provided an effective channel for the transport of electrolyte ions. The monomeric devices of electrochemical capacitors were assembled using polyethersulfone porous membrane as the diaphragm, and the effects of preparation conditions on the performance of the diaphragm and electrochemical capacitor were studied. The polyethersulfone porous membrane and the electrochemical capacitor monomeric device with good capacitive performance are obtained. However, the high porosity of the porous membrane has a great effect on the mechanical properties of the diaphragm. We changed the preparation technology of the membrane and prepared the dense membrane by casting method, which improved the mechanical properties of the diaphragm effectively and modified by polymer modification. Furthermore, quaternary ammonium functional polyethersulfone matrix materials with ionic conductivity were designed and prepared. The diaphragm and aqueous phase electrochemical capacitors with good electrochemical performance and excellent cyclic stability were obtained. Secondly, in order to obtain solid state electrochemical capacitors with high performance, light weight and small size, functional composite membranes were prepared by introducing high hydrophilic resin polyvinylpyrrolidone on the basis of functionalized poly (aryl ether sulfone). Polymer electrolytes were prepared by using potassium hydroxide aqueous solution to improve the safety performance of electrochemical capacitors and the specific capacitance and energy density of electrochemical capacitors. At the same time, the excellent cycle life of electrochemical capacitor is given. Finally, redox polymer electrolytes were prepared by introducing redox active substances into polymer electrolytes, which provided additional Faraday pseudo-capacitors for electrochemical capacitors. The specific capacitance and energy density of electrochemical capacitors are further improved.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O632.32;TB383.2
【参考文献】
相关期刊论文 前3条
1 李作鹏;赵建国;温雅琼;李江;邢宝岩;郭永;;超级电容器电解质研究进展[J];化工进展;2012年08期
2 Shan Shi;Chengjun Xu;Cheng Yang;Jia Li;Hongda Du;Baohua Li;Feiyu Kang;;Flexible supercapacitors[J];Particuology;2013年04期
3 Daniel Jewell;George Z. Chen;;Carbon nanotube and conducting polymer composites for supercapacitors[J];Progress in Natural Science;2008年07期
相关博士学位论文 前3条
1 王艳强;表面偏析超滤膜的制备及其抗污染机理研究[D];天津大学;2007年
2 石卿;超滤膜的仿生构建及抗污染机理的分子水平探索[D];天津大学;2010年
3 刘e
本文编号:1397643
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1397643.html