糯米粉基可降解复合材料的制备及性能研究
本文关键词:糯米粉基可降解复合材料的制备及性能研究 出处:《沈阳工业大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 糯米粉 ε-己内酯 原位插层聚合 有机蒙脱土 纳米复合材料
【摘要】:淀粉是一种来源广、可再生、可降解的天然高分子,但是淀粉易吸水和不能熔融的缺点而限制其应用。本论文用低结晶度的膨化糯米粉(PSt)、具有优良性能和生物降解性的ε-己内酯和层状的有机化蒙脱土来制备糯米粉基可降解复合材料,该复合材料在通用材料、医用材料领域有广泛的应用前景,并且能够产生巨大的经济效益。 主要内容和研究成果如下: 1.通过开环聚合的方法,以膨化糯米粉为骨架,ε-己内酯为接枝单体,辛酸亚锡为催化剂,制备出具有热塑性的膨化糯米粉接枝聚己内酯(PSt-g-PCL)共聚物。确定出最佳投料为ε-己内酯单体与膨化糯米粉的配比为3.3:(1mL/g),接枝率达到最大,为89.16%;DSC结果表明,PSt-g-PCL具有热塑性,熔点为64.66℃;TGA结果表明,糯米粉接枝PCL后,PSt部分的热分解温度降低;XRD表明,PSt-g-PCL为一种结晶型聚合物;SEM表明,糯米粉接枝PCL后形成了新的形貌结构。 2.通过原位插层聚合的方法制备出PSt-g-PCL/OMMT纳米复合材料。DSC结果表明,OMMT对体系的结晶性有一定的影响,当OMMT含量为5%时,,结晶温度为35.49℃;XRD表明,当体系中OMMT的量为15%时,层间距增大,原OMMT中2θ=4.90°的特征峰变宽,并且左移到2θ=4.70°,说明PSt-g-PCL共聚物插入到了OMMT片层中;SEM结果表明,OMMT堆砌的片层结构被破坏,形貌发生改变,这是因为PSt-g-PCL插入到OMMT的层间;TGA结果表明,加入OMMT后热稳定性提高,当加入15%OMMT时,最大分解速率下的热分解温度为345.75℃(PSt段)和411.29℃(PCL段)。 3.采用熔融共混的方法制备出LDPE/EAA(/PSt-g-PCL/OMMT)三元共混复合材料,讨论了不同添加量的乙烯-丙烯酸(EAA)(3%、5%、7%、9%和11%)对三元共混材料的影响。FT-IR结果表明,EAA中的C=O与PSt-g-PCL中残存的羟基相互作用形成了氢键;DSC结果表明,LDPE与PSt-g-PCL/OMMT之间相容性较差,EAA的加入能够改善各组分间的相容性;力学性能测试表明,随着EAA的增多,拉伸强度下降,断裂伸长率增加。 4.讨论了不同添加量的PSt-g-PCL/OMMT纳米复合材料(7%、17%、27%和47%)对LDPE/EAA/(PSt-g-PCL/OMMT)三元共混复合材料性能的影响。力学性能表明,PSt-g-PCL/OMMT纳米复合材料的加入使该三元共混复合材料的力学性能下降,当添加量为17%时,综合力学性能较好,拉伸强度为8.0Mpa,断裂伸长率为90.41%;SEM结果表明,PSt-g-PCL/OMMT纳米复合材料的量为7%和17%时,该三元共混复合材料相容性较好;加入47%PSt-g-PCL/OMMT纳米复合材料时,该三元共混材料的吸水率最大,为2.43%,有较好的耐水性,土埋降解100天后,质量保持率为92.766%,说明具有良好的生物降解性。 5. LDPE/EAA(/PSt-g-PCL/OMMT)与LDPE/EAA/PSt-g-PCL复合材料相比,OMMT的加入提高了三元共混复合材料的拉伸强度和耐水性,但是断裂伸长率和生物降解性下降。
[Abstract]:Starch is a kind of wide source, renewable, biodegradable natural polymer, but starch absorbent and can melt disadvantage limits its application. A low crystallinity of the puffed glutinous rice powder (PSt), with excellent properties and biodegradability of caprolactone and layered organic montmorillonite. Preparation of glutinous rice flour based degradable composite material, the composite material in general, the field of medical material has broad application prospects, and can produce enormous economic benefits.
The main contents and research results are as follows:
1. through the method of ring opening polymerization, using puffed rice powder as skeleton, caprolactone as grafting monomer and stannous octoate as catalyst, prepared with puffed glutinous rice powder graft thermoplastic polycaprolactone (PSt-g-PCL) copolymer. The optimum feeding for s-CAPROLACTONE monomer and puffing glutinous rice powder ratio is 3.3: (1mL/g), the grafting rate reached the maximum, 89.16% DSC; the results show that the PSt-g-PCL with thermoplastic, melting point of 64.66 DEG C; the results of TGA showed that the glutinous rice flour after grafting PCL, PSt part of the thermal decomposition temperature decreased; XRD showed that PSt-g-PCL is a crystalline polymer; SEM show PCL, glutinous rice powder grafting after the formation of the new structure.
2. by in situ intercalation polymerization PSt-g-PCL/OMMT composite was prepared by.DSC. The results showed that OMMT had a certain influence on the crystallization of the system, when the OMMT content is 5%, the crystallization temperature is 35.49 DEG C; XRD showed that when the system for 15% OMMT, the layer spacing increases, the original feature in OMMT peak 2 theta =4.90 degrees wide, and left to the 2 theta =4.70 degrees, PSt-g-PCL copolymer is inserted into the layers of OMMT; SEM results showed that the lamellar structure of OMMT stack is destroyed and the morphological change, this is because PSt-g-PCL is inserted into the interlayer of OMMT; TGA results show that the improved heat stability after joining OMMT, when 15%OMMT is added, the maximum decomposition rate of the thermal decomposition temperature of 345.75 DEG C (PSt) and 411.29 (PCL).
3. using the melt blending method to prepare LDPE/EAA (/PSt-g-PCL/OMMT) three element composites, discussed the different amount of ethylene acrylic acid (EAA) (3%, 5%, 7%, 9% and 11%). The results of.FT-IR of three yuan blends showed that the residual C=O and PSt-g-PCL EAA in hydroxyl each other the role of the formation of a hydrogen bond; DSC results showed that between LDPE and PSt-g-PCL/OMMT compatibility is bad, the addition of EAA can improve the compatibility between different components; mechanical properties test shows that with the increase of EAA, the tensile strength decreased and elongation increased.
4. discuss the different adding PSt-g-PCL/OMMT nano composite material amount (7%, 17%, 27% and 47%) of LDPE/EAA/ (PSt-g-PCL/OMMT) affects the performance of three yuan composites. The mechanical properties showed that adding PSt-g-PCL/OMMT nano composite materials will decrease the mechanical properties of the blends of three composite materials, when adding 17%, comprehensive good mechanical properties, tensile strength 8.0Mpa, elongation is 90.41%; the results of SEM showed that the PSt-g-PCL/OMMT nano composite material was 7% and 17%, the three yuan composite material has good compatibility; adding 47% PSt-g-PCL/OMMT nano composite materials, the water absorption of three yuan blends the maximum rate of 2.43%, water resistance well, after 100 days of soil degradation, maintain the quality rate of 92.766%, indicating good biodegradability.
Compared with LDPE/EAA/PSt-g-PCL composite, 5. LDPE/EAA (/PSt-g-PCL/OMMT) increased the tensile strength and water resistance of three LDPE/EAA/PSt-g-PCL composites, but the elongation at break and biodegradability decreased.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ314.1;TB33
【参考文献】
相关期刊论文 前10条
1 郝明凤;刘勇;丁玉梅;杨卫民;;生物降解高分子材料研究进展[J];工程塑料应用;2010年02期
2 盛德鲲;谈娟娟;刘向东;王丕新;杨宇明;;原位聚合法制备聚氨酯/蒙脱土复合材料研究[J];工程塑料应用;2011年11期
3 李勇锋;林嘉平;陆冲;程树军;;钛酸四丁酯引发聚己内酯接枝改性淀粉的制备[J];北京科技大学学报;2007年02期
4 李勇锋;陆冲;程树军;林嘉平;周达飞;;钛酸四丁酯增韧改性聚乳酸/淀粉共混材料[J];功能高分子学报;2007年03期
5 邓朝霞;;蒙脱土有机化改性的研究进展[J];广东第二师范学院学报;2012年05期
6 Sangeeta Garg;Asim Kumar Jana;;Preparation of LDPE-Acetylated/Butyrylated Starch Blend Blow Films and Characterization[J];Chinese Journal of Polymer Science;2014年03期
7 赖登旺;李笃信;杨军;刘爱学;王进;;蒙脱土改性研究进展[J];工程塑料应用;2013年03期
8 张起;李笃信;赖登旺;游一兰;欧宝立;雷霆;;聚酰亚胺/绢云母复合材料的制备及表征[J];高分子学报;2014年03期
9 张昊;王建坤;王瑞;董永春;;微波辅助制备乙酰化玉米淀粉的理化性能[J];材料研究学报;2014年04期
10 张印民;刘钦甫;孙俊民;张永峰;张士龙;;丁苯橡胶/高岭土复合材料的性能及补强机理[J];高分子材料科学与工程;2014年09期
本文编号:1397976
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1397976.html