PZT厚膜的电射流沉积研究
本文关键词:PZT厚膜的电射流沉积研究 出处:《大连理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:PZT厚膜具有高压电性能和机电耦合系数,在高频超声传感器、微换能器、微变形镜等高性能微器件方面具有广阔的应用前景。利用电射流沉积技术(Electrohydrodynamic jet deposition, EJD)制备膜时,具有沉积速率高、膜结构可控性强等优点。本文配制了PZT悬浮液,利用电射流沉积技术制备了PZT厚膜,首先研究了电射流沉积参数、悬浮液混合条件对厚膜致密性的影响,并对PZT厚膜进行了溶胶的渗透;然后对电射流沉积的PZT厚膜进行了抛光处理,研究了厚膜表面粗糙度和厚度对PZT厚膜压电性质的影响;最后研究了柔性衬底的PZT厚膜沉积。首先,制备了PZT复合悬浮液,以硅片为衬底,电射流沉积了PZT厚膜,研究了电射流沉积高度、流量及悬浮液混合条件对厚膜致密性的影响,降低电射流沉积高度和流量有助于提高PZT厚膜致密性,利用球磨方法混合的PZT悬浮液,沉积的PZT厚膜致密性明显提高,制备了无裂纹的PZT厚膜。为了进一步提高厚膜的致密性,研究了PZT厚膜的溶胶渗透,溶胶渗透后的PZT厚膜致密性明显提高。然后,研究了电射流沉积PZT厚膜的机械抛光工艺,经过机械抛光处理,PZT厚膜的表面粗糙度Ra从422nm降低到23nnm。此外,分析了厚膜表面粗糙度和厚度对PZT厚膜压电性质的影响,降低表面粗糙度促进了PZT厚膜压电性质的提高,当PZT膜厚为10μm-60μm之间时,PZT膜压电性质随着膜厚的增加显著增大,当膜厚在60μm-80μm之间时,厚膜压电性质趋于平缓,当膜厚高于80μm时,其压电性质明显下降。在PZT膜厚为68μm时,压电常数d33为91pC/N。最后,在不锈钢和铁镍合金柔性衬底上沉积了PZT厚膜,采用双面均匀沉积PZT厚膜,解决了应力不均导致柔性衬底弯曲问题,获得了柔性衬底/PZT厚膜复合元件,并集成在压电式振动能量采集器和磁电换能式振动能量采集器中。
[Abstract]:PZT thick film has high piezoelectric performance and electromechanical coupling coefficient in high frequency ultrasonic sensors, micro transducers. High performance microdevices such as microdeformable mirrors have broad application prospects. Electrohydrodynamic jet deposition is used in electrojet deposition. In this paper, PZT suspensions were prepared and PZT thick films were prepared by electrojet deposition. Firstly, the influence of electrojet deposition parameters and suspension mixing conditions on the densification of thick film was studied, and the sol permeation of PZT thick film was carried out. The effect of surface roughness and thickness on the piezoelectric properties of PZT thick film was studied. Finally, PZT thick film deposition on flexible substrate was studied. Firstly, PZT composite suspension was prepared. PZT thick film was deposited by electrojet on silicon substrate, and the deposition height of PZT was studied. The effect of flow rate and suspension mixing condition on the density of thick film was studied. The density of thick film of PZT was improved by reducing the deposition height and flow rate of electrojet. The PZT suspension mixed by ball milling method was used. The density of the deposited PZT thick film was improved obviously, and the crack-free PZT thick film was prepared. In order to further improve the densification of the thick film, the sol permeation of the PZT thick film was studied. The densification of PZT thick film was improved obviously after the sol permeated. Then, the mechanical polishing process of PZT thick film deposited by electrojet was studied and treated by mechanical polishing. The surface roughness Ra of PZT film is reduced from 422nm to 23nm. In addition, the effect of surface roughness and thickness on piezoelectric properties of PZT thick film is analyzed. The reduction of surface roughness promotes the improvement of piezoelectric properties of PZT thick films. When the thickness of PZT films is between 10 渭 m and 60 渭 m, the piezoelectric properties of PZT films increase significantly with the increase of film thickness. When the thickness of the film is between 60 渭 m and 80 渭 m, the piezoelectric property of the thick film tends to be smooth, and when the thickness of the film is higher than 80 渭 m, the piezoelectric property of the film decreases obviously. When the thickness of PZT film is 68 渭 m, the piezoelectric property of the film tends to be flat. The piezoelectric constant D33 is 91 PC / N. finally, PZT thick films were deposited on stainless steel and Fe-Ni alloy flexible substrates, and PZT thick films were uniformly deposited on both sides. The bending problem of flexible substrate caused by uneven stress is solved, and the flexible substrate / PZT thick film composite element is obtained and integrated into piezoelectric vibration energy collector and magnetoelectric transducer vibration energy collector.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ153;TB383.2
【共引文献】
相关期刊论文 前10条
1 裴先茹;高海荣;;压电材料的研究和应用现状[J];安徽化工;2010年03期
2 李伟;;基于双晶片压电传感器特性分析[J];传感器与微系统;2006年04期
3 吴雪;陈裕泉;吕维雪;张武明;;声波道生物传感器[J];国外医学.生物医学工程分册;1996年02期
4 王社良;刘敏;樊禹江;;新型压电陶瓷驱动器的特性分析[J];材料导报;2012年22期
5 袁天辰;杨俭;宋瑞刚;刘小威;汪杰;吴建宝;;基于压电陶瓷的轨道振动能量采集方法[J];城市轨道交通研究;2012年12期
6 王二萍;高景霞;张金平;蔡艳艳;张洋洋;;压电俘能器研究现状及新发展[J];电子元件与材料;2015年09期
7 刘桂香;徐光亮;罗庆平;;不同方法合成掺杂ZnO粉体制备ZnO压敏电阻[J];化工进展;2007年02期
8 叶会英,禹延光,浦昭邦;材料固有损耗对压电振子谐振特性及参数测量的影响[J];计量学报;2001年01期
9 严继康,甘国友,孙加林,陈敬超,张家涛;压电复合材料的制备[J];昆明理工大学学报;2000年06期
10 于雪峤;冀文浩;杜玮;金鑫;代圣;杨双疆;;微型压电式振动能量采集器原理及试验[J];林业机械与木工设备;2012年10期
相关博士学位论文 前4条
1 杜设亮;精密机械仿生热稳定构件研究[D];浙江大学;2001年
2 江民红;KNN基无铅压电陶瓷的改性与机理研究[D];中南大学;2010年
3 马家峰;高性能BCTZ基无铅压电陶瓷的改性与机理研究[D];中南大学;2013年
4 边捷;纳米阵列图案表面浸润性研究[D];南京大学;2014年
相关硕士学位论文 前10条
1 梁丽娉;压电陶瓷传感器力学模型理论与试验研究[D];沈阳建筑大学;2011年
2 袁金库;基于ARM7的压电陶瓷换能器导纳圆测量仪的研制[D];天津大学;2010年
3 谢海军;夹杂在压电材料中的迁移及对压电材料蠕变特性的影响[D];上海交通大学;2012年
4 陈立军;ZnO压敏电阻器制备新技术研究[D];西安电子科技大学;2001年
5 闫晓燕;纳米ZnO压敏陶瓷的制备及性能研究[D];太原理工大学;2003年
6 严蔚;智能主动构件的设计、实验和分析研究[D];浙江大学;2004年
7 吕宇强;先驱体法合成PZT-PMN系统压电陶瓷性能研究[D];天津大学;2004年
8 郭红丽;纳米ZnO压敏陶瓷结构与性能研究[D];太原理工大学;2005年
9 刘彦东;橡胶基压电阻尼减振复合材料的制备[D];北京化工大学;2006年
10 钟强;多孔氧化锌纳米结构的形态控制及机理研究[D];华中师范大学;2007年
,本文编号:1410888
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1410888.html