变曲率FGM拱的面内自由振动分析
发布时间:2018-01-17 02:29
本文关键词:变曲率FGM拱的面内自由振动分析 出处:《振动与冲击》2017年09期 论文类型:期刊论文
更多相关文章: 变曲率 FGM拱 面内自由振动 频率 传递矩阵法
【摘要】:基于Euler-Bernoulli曲梁理论,考虑材料沿拱厚度方向呈梯度分布时中性层的改变,将变曲率功能梯度材料(Functionally Graded Materials,FGM)拱在弧线方向离散成多个曲拱单元。视每个曲拱单元为半径一定的圆弧拱单元,根据Hamilton变分原理推导出FGM圆弧拱单元的面内自由振动方程,进而求得了单元传递矩阵。利用传递矩阵法(Transfer Matrix Method,TMM)推导出变曲率FGM拱的面内自由振动特征方程,求解两端固定边界条件下变曲率FGM拱面内自由振动的固有频率,并将得到结果与现有文献作了比较,证明TMM对求解该问题的有效性。分析了曲率变化系数和材料体积分数变化系数对变曲率FGM拱的面内自由振动频率的影响。
[Abstract]:Based on the Euler-Bernoulli curved beam theory, the change of neutral layer is considered when the material is gradient distribution along the arch thickness. The functionally graded material with variable curvature is functionally Graded Materials. The FGM) arch is discretized into several curved arch elements in the arc direction. Each curved arch element is regarded as a circular arc arch element with a certain radius. Based on the Hamilton variational principle, the in-plane free vibration equation of FGM arc arch element is derived. Then the element transfer matrix is obtained, and the in-plane free vibration characteristic equation of FGM arch with variable curvature is derived by transfer Matrix method TMMM. The natural frequencies of the free vibration in the plane of FGM arch with variable curvature under the condition of fixed boundary at both ends are solved, and the results obtained are compared with the existing literatures. It is proved that TMM is effective in solving this problem. The influence of the coefficient of curvature variation and the coefficient of material volume fraction variation on the in-plane free vibration frequency of FGM arch with variable curvature is analyzed.
【作者单位】: 兰州理工大学理学院;
【基金】:国家自然科学基金(11662008) 甘肃省自然科学基金(148RJZA017)
【分类号】:O323;TB34
【正文快照】: 近年来,功能梯度材料(Functionally Graded Materi-als,FGM)以具有较高的力学性能越来越多的被应用和研究,其一般是由陶瓷和金属按指定的方向以一定的分布规律复合而成。对FGM性能的研究也成为结构设计及优化的重要内容,当然研究FGM结构的自由振动特性也有着十分重要的意义。C,
本文编号:1435927
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1435927.html