碳纳米管复合镀层沉积工艺及性能研究
本文选题:碳纳米管 切入点:复合镀层 出处:《扬州大学》2015年硕士论文 论文类型:学位论文
【摘要】:碳纳米管以其良好的力学性能、电学性能和特殊的中空管状结构广泛运用于工业中,碳纳米管结合工程材料制备耐磨损耐腐蚀的高性能复合材料已成为近年来的热门研究项目。本课题中将碳纳米管作为第二增强相,采用复合电沉积的方式制备镍/碳纳米管复合镀层并对其性能进行分析,主要研究内容如下:(1)研究不同类型表面活性剂对碳纳米管分散性及复合电镀层性能的影响,实验发现阴离子表面活性剂虽不利于碳纳米管在阴极表面的沉积,但显著提高碳纳米管与基质金属之间的结合力,镀层不易产生缺陷,组织致密,硬度和电化学性能良好,在电镀过程中碳纳米管也能较好地保持稳定悬浮状态。研究发现碳纳米管经混酸化处理后被打断,表面带有活性基团,沉降实验中处理后的碳纳米管分散性明显改善。因此,在本论文中通过对碳纳米管进行酸处理并选用阴离子表面活性剂SDS作为碳纳米管的分散剂对其进行分散稳定,得到性能更加优越的复合镀层。(2)以复合镀层的沉积速率和镀层中碳纳米管的百分含量为标准,分别研究电镀液中碳纳米管的浓度、阴极电流密度、沉积的时间、pH、温度、搅拌的速度和分散剂浓度等因素的影响,采用正交实验和极差分析法获得制备复合镀层的最佳工艺条件。SEM图片显示:镀层表面结构致密,碳纳米管在复合镀层中均匀分布。通过能谱图得知复合镀层是由Ni、C、O三种元素组成,实现了碳纳米管和镍的共沉积。(3)镀液中碳纳米管的浓度对复合镀层中表面形貌及组成成分有很大的影响。结果显示随着镀液中碳纳米管浓度的增加,复合电镀层的表面越发粗糙,并且C元素的含量最高可达11.21%。复合镀层硬度测试表明当碳纳米管的浓度为2g/L时,复合镀层的硬度最高。采用三电极系电化学工作站测量复合镀层在3.5%NaCl溶液中的Tafel曲线及交流阻抗谱,结果显示复合电镀层的腐蚀电位大于金属镍层,腐蚀电流小于金属镍层,表明在中性溶液中复合镀层的耐蚀性要比纯镍层好。交流阻抗谱为单容抗弧,复合镀层双电层电容的下降和电荷转移电阻的增加都表明镀层具有更好的耐腐蚀性。
[Abstract]:Carbon nanotubes (CNTs) are widely used in industry because of their good mechanical properties, electrical properties and special hollow tubular structures. Carbon nanotubes (CNTs) bonded with engineering materials have become a hot research project in recent years for the preparation of wear-resistant and corrosion-resistant high performance composites. In this study, carbon nanotubes (CNTs) are regarded as the second reinforcing phase. Nickel / carbon nanotube composite coatings were prepared by composite electrodeposition and their properties were analyzed. The main research contents are as follows: (1) the effects of different surfactants on the dispersion of carbon nanotubes and the properties of composite electroplating coatings were studied. It is found that anionic surfactants are not conducive to the deposition of carbon nanotubes on the cathode surface, but the adhesion between carbon nanotubes and matrix metals is significantly increased, the coating is not easy to produce defects, the microstructure is compact, the hardness and electrochemical properties are good. It was found that the carbon nanotubes were interrupted after mixed acidizing treatment, with active groups on the surface, and the dispersion of carbon nanotubes was improved obviously in the sedimentation experiment. In this paper, the carbon nanotubes were treated with acid and the anionic surfactant SDS was used as dispersant to disperse and stabilize the carbon nanotubes. Based on the deposition rate of the composite coating and the percentage content of carbon nanotubes in the coating, the concentration, cathodic current density, deposition time, pH and temperature of the carbon nanotubes in the electroplating solution were studied, respectively. Under the influence of agitation speed and dispersant concentration, the optimum technological conditions for preparing composite coating were obtained by orthogonal test and range analysis. SEM pictures showed that the surface structure of the coating was compact, The carbon nanotubes are evenly distributed in the composite coating. The results show that the concentration of carbon nanotubes in the plating bath has a great influence on the surface morphology and composition of the composite coating. The results show that the concentration of carbon nanotubes in the plating solution increases with the increase of the concentration of carbon nanotubes in the plating solution. The surface of the composite electroplating layer is rougher, and the content of C element is up to 11.21.The hardness test of the composite coating shows that when the concentration of carbon nanotubes is 2 g / L, The hardness of the composite coating was the highest. The Tafel curve and AC impedance spectrum of the composite coating in 3.5% NaCl solution were measured by the three-electrode electrochemical workstation. The results showed that the corrosion potential of the composite electroplating layer was greater than that of the nickel metal layer, and the corrosion current was lower than that of the nickel metal layer. The results show that the corrosion resistance of the composite coating in neutral solution is better than that of the pure nickel layer, the AC impedance spectrum is single capacitive reactance arc, the decrease of the double layer capacitance and the increase of the charge transfer resistance of the composite coating all show that the coating has better corrosion resistance.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ153;TB383.1
【相似文献】
相关期刊论文 前10条
1 郭忠诚,朱晓云,翟大成,徐瑞东,曹建春,龙晋明;电沉积RE-Ni-W-B-B_4C-MoS_2复合镀层的性能研究[J];材料保护;2002年07期
2 刘烈炜,沈晓虹,赵志祥,田炜,杨志强;镍基夜光颜料发光复合镀层的研究[J];材料保护;2002年11期
3 丁红燕,周广宏;镍-磷-纳米Al_2O_3复合镀层的摩擦学性能[J];机械工程材料;2005年04期
4 A.Santhi;K.N.Srinivasan;S.John;;发光化学镍复合镀层(英文)[J];电镀与涂饰;2009年01期
5 ;无电复合镀层[J];特殊电工;1974年01期
6 李卫东,周晓荣,左正忠,周运鸿;电沉积复合镀层的研究现状[J];电镀与涂饰;2000年05期
7 程森,王昆林,赵高敏;镍基纳米SiC复合镀层的摩擦学性能[J];清华大学学报(自然科学版);2002年04期
8 沈晓虹,刘烈炜;电沉积锌基复合镀层的研究现状[J];材料开发与应用;2002年04期
9 王丽丽;疏水性复合镀层电镀工艺[J];电镀与精饰;2002年04期
10 程森,王昆林,赵高敏;纳米SiC复合镀层制备工艺的研究[J];材料保护;2002年08期
相关会议论文 前10条
1 郭鹤桐;唐致远;;镍基自润滑减摩复合镀层的研究[A];天津市电镀工程学会第四次学术年会论文集[C];1983年
2 郭鹤桐;王兆勇;舒钰;;金基复合镀层的形成机理[A];天津市电镀工程学会第四次学术年会论文集[C];1983年
3 郭鹤桐;覃奇贤;张栋;;锡——镍复合镀层摩擦性能的研究[A];表面处理学术讨论会论文集[C];1986年
4 王为;郭鹤桐;;复合镀技术的进展与展望[A];第五届全国表面工程学术会议论文集[C];2004年
5 王利;万久聪;孙晓军;胡献国;吴玉程;;Ni-P-Nano-MoS_2化学复合镀层的制备与表征[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年
6 王利;万久聪;孙晓军;胡献国;吴玉程;;Ni-P-Nano-MoS_2化学复合镀层的制备与表征[A];第六届全国表面工程学术会议论文集[C];2006年
7 唐致远;王为;赵秉英;于英浩;郭鹤桐;;抗变色银基复合镀层[A];2002年全国电子电镀年会论文集[C];2002年
8 李燕;吴玉程;舒霞;黄新民;郑玉春;;电沉积Ni-Fe-NiFe_2O_4复合镀层的制备及性能初探[A];第九届全国转化膜及表面精饰学术年会论文集[C];2012年
9 赵秉英;黄成德;王为;唐致远;郭鹤桐;;金基复合镀层工艺选择的研究[A];天津市电镀工程学会第八届学术年会论文集[C];1998年
10 郭忠诚;李爱莲;张广立;;电沉积镍基合金及其复合镀层的研究现状与发展趋势[A];2002北京电镀行业清洁生产研讨会论文集[C];2002年
相关重要报纸文章 前1条
1 本报记者 夏杰生;让结晶器铜管延年益寿[N];中国冶金报;2003年
相关博士学位论文 前10条
1 金亚旭;钛酸钾晶须增强镍磷基化学复合镀层的制备与性能研究[D];武汉理工大学;2008年
2 马福秋;镍钛合金表面银基复合镀层的制备与性能研究[D];哈尔滨工程大学;2012年
3 张树生;镍磷复合镀层换热元件制备工艺研究及凝结试验分析[D];山东大学;2006年
4 胡斌梁;Ni-P复合镀层制备及其摩擦力学特性分析[D];湘潭大学;2013年
5 李卫红;自动电刷镀Ni-PTFE复合镀层特性及共沉积机制研究[D];上海交通大学;2008年
6 汪超;磁场中Ni-纳米Al_2O_3复合镀层制备及其电沉积机理的研究[D];上海大学;2011年
7 范云鹰;电沉积Zn-Fe-SiO_2复合镀层工艺、机理及应用研究[D];昆明理工大学;2005年
8 张e,
本文编号:1557100
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1557100.html