基于Virtual.lab的多孔材料吸声性能仿真研究
发布时间:2018-03-08 15:41
本文选题:Virtual.lab 切入点:硅酸盐 出处:《西南交通大学》2015年硕士论文 论文类型:学位论文
【摘要】:硅酸盐基多孔材料具有良好的环境适应性及吸声性能,取材广泛,加工制备工艺简单,成为目前应用广泛的吸声材料。采用快硬快凝水泥为主要原材料制备了硅酸盐基多孔吸声材料。研究结果表明,该种材料在道路屏障、轨道交通路面等领域具有良好的吸声降噪效果,在一定程度上解决了日益困扰人们生活工作中的噪声问题。硅酸盐基多孔材料的吸声性能研究对工程应用及噪声控制都有很重要的现实意义。根据合理的配比制备了硅酸盐基多孔吸声材料,并且通过电子万能压力试验机测试多孔材料的抗压强度,通过阻抗管法测定多孔材料的吸声系数,比较了容重对多孔材料吸声性能的影响。随着容重增加,材料吸声系数下降。分析结果表明材料在610kg/m3,孔隙率在70%-85%时材料的力学性能和吸声性能表现最佳。分析了影响多孔材料吸声性能的主要因素。与实验室阻抗管法测试材料吸声系数的方法不同,在LMS Virtual.lab软件平台下材料参数设置的单一性,数据显示单纯改变材料容重并不能很好的调节材料的吸声性能。但协调设置材料参数之后模拟的吸声系数与实验室测定的材料吸声系数吻合度提高,证明在VL平台下进行材料吸声系数模拟仿真是可行的。Virtual.lab的模拟结果显示,改变材料的孔隙率可以大幅度的改变材料的吸声性能。具体表现为材料孔隙率越高,则材料吸声系数提高得越快,说明孔隙率是影响材料吸声性能的一个重要参数。对于硅酸盐基多孔材料孔隙率控制70%-85%时性能最好;改变材料粘性特征长度可以明显改善材料的吸声性能,即改变孔洞之间连接的连通性可以控制气流流过的速度从而影响其吸声系数,经模拟仿真得知,材料粘性特征最佳长度为0.05 mm;材料的流阻率是材料的一个固有属性,可以影响到材料的吸声系数。但是经过实验数据可以看到,并不是空气流阻率越高则材料的吸声性能越好,存在一个最佳范围,取值在8000-20000 Pa-s/m2时材料的吸声性能表现最好。
[Abstract]:Silicate based porous material with wide adaptability and sound absorption performance, good processing, simple preparation process, a sound-absorbing material widely used. The preparation of silicate based porous materials quick harden cement as the main raw materials. The results show that this kind of material in the road barrier, with the effect of the noise absorption good road rail transportation and other fields, to a certain extent, solve the problem of noise increasingly troubled people of life and work. Study on the sound absorption properties of silicate based porous material has very important practical significance to the engineering application and noise control. According to the reasonable ratio of preparation of silicate based porous materials, and the compressive strength of electron universal pressure testing machine of porous materials, determination of the absorption coefficient of porous materials through impedance tube, bulk density of porous sound absorbing performance comparison The effect. With the bulk density increased, decreased the absorption coefficient of materials. Analysis results show that the material in 610kg/m3, the best performance when the porosity of materials in 70%-85% mechanical properties and sound absorption performance. Analyzed the main factors affecting the sound absorption properties of porous materials. Different methods of testing material absorption coefficient and impedance tube in the laboratory, a single set of material parameters LMS Virtual.lab software platform, the data show a simple change material density is not a good regulation of the sound absorption performance of the material. But after setting the coordinate material parameters determination of sound absorption coefficient and absorption coefficient of material laboratory simulation of improving the conformity, proof of the sound absorption coefficient of simulation in VL platform is feasible under the.Virtual.lab simulation results show change, the porosity of the material can greatly change the sound absorption properties of materials. The specific performance of the porosity is high, then The sound absorption coefficient increased faster, that porosity is an important parameter influencing the sound absorbing performance. The best performance for the porosity control of 70%-85% silicate based porous material; changing the material viscous characteristic length can improve the sound absorption properties of materials, namely change the hole connection between the connectivity of the air flow can be controlled through the speed thus affecting its the sound absorption coefficient, by simulation, that the optimum length of material viscosity characteristics of 0.05 mm; the flow resistance ratio of material is an inherent property of materials, the absorption coefficient can affect the material. But through the experimental data can be seen, and not the air flow rate of the higher the better sound absorption properties of materials, the existence of a the best performance, the sound absorption performance of the value of material at 8000-20000 Pa-s/m2 is the best.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.4
【参考文献】
相关期刊论文 前2条
1 朱彬,唐进锋,潘自立;城市轨道交通噪声控制的探讨[J];山西建筑;2004年02期
2 高军;;高速铁路的噪声控制方法研究[J];铁道运输与经济;2006年10期
,本文编号:1584506
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1584506.html