多孔硅含能芯片的能量释放特性和规律研究
发布时间:2018-03-09 00:16
本文选题:多孔硅含能材料 切入点:多孔硅含能芯片 出处:《南京理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:多孔硅内嵌氧化剂后形成一类新型纳米结构含能材料。由于其制备工艺与MEMS工艺兼容,适合作为含能芯片的含能材料。目前这种纳米结构的含能材料已经开始应用于点火装置,但是应用的基础研究仍然十分薄弱,能量控制和释放规律的认识还比较浅显。本文针对多孔硅纳米结构含能材料在微推进方面的应用,开展了材料制备、芯片封装和输出特性及规律的研究,初步掌握了多孔硅含能材料的能量控制和释放规律。主要的研究成果如下:采用电化学腐蚀技术制备了多孔硅薄膜。通电时间和电流强度的提高均会导致膜厚度的增大。当电流强度0.1A、通电时间15mmin时制得的多孔硅薄膜表面平整,平均粗糙度仅为2.7nm,而厚度则达到25μm,可作为实验中制备多孔硅薄膜的最佳条件。采用MEMS工艺在多孔硅薄膜基础上制备了多孔硅纳米含能材料。通过X射线衍射分析发现,填充的高氯酸钠是以一水合高氯酸钠的形式存在于孔隙中,同时也证实孔隙表面有Si-O-H的存在,说明多孔硅表面有被氧化的迹象。热分析实验表明高氯酸钠在熔融后与多孔硅发生反应,放热量达到689.5J.g"1。使用高速摄影记录芯片的电点火过程,反应持续时间可以达到毫秒级。采用光纤探测法研究芯片的延迟时间,发现电点火情况下芯片的延迟时间在微秒级。这表明多孔硅具有良好的发火可靠性,同时还具有较长的作用时间。为了研究芯片的输出压力,设计制作了微型密闭爆发器。实验发现输出压力随着点火电压的增大而增大。在点火电压为80V时仅有0.22MPa的输出压力,当电压达到200V时输出压力升高到17.99MPa。使用扭摆冲量测试装置研究芯片在不同点火电压下的反应冲量。结果表明,多孔硅含能芯片的冲量一般在微牛秒级,表明多孔硅含能芯片有望用于微推进领域中。为研究多孔硅含能芯片在约束条件下的反应性能,设计了直孔和收敛-扩张孔两种喷孔结构。实验发现,低点火电压时,两种封装结构对冲量的提升都不明显,但是在高电压下,收敛-扩张喷孔能够大幅提高反应冲量,在200V时达到了近2mN-s,远远高于直孔时的914.52μN·s和无喷孔时的728.42μN-s。
[Abstract]:A new type of nano-structure energetic material is formed by intercalation of oxidant in porous silicon. Because its preparation process is compatible with MEMS process, it is suitable for the energetic material of energetic chip. At present, this kind of nano-structure energetic material has been used in igniting device. However, the basic research of application is still very weak, and the understanding of energy control and release law is still relatively simple. In this paper, the preparation of porous silicon nanostructured energetic materials in micro-propulsion has been carried out. Research on the characteristics and laws of Chip Packaging and output, The main research results are as follows: the porous silicon thin films were prepared by electrochemical corrosion technique. The increase of electrification time and current intensity will lead to the thickness of porous silicon films. When the current intensity is 0.1A and the electric time is 15mmin, the surface of the porous silicon film is flat, The average roughness is only 2.7 nm and the thickness is 25 渭 m, which can be used as the best condition for the preparation of porous silicon thin films. The porous silicon nano-energetic materials were prepared on the basis of porous silicon films by MEMS process. The filled sodium perchlorate exists in the pore in the form of sodium perchlorate monohydrate, and Si-O-H exists on the pore surface. Thermal analysis shows that sodium perchlorate reacts with porous silicon after melting, and the heat release reaches 689.5 J. g "1.The electric ignition process of the chip is recorded by high-speed photography. The reaction duration can reach millisecond order. The delay time of the chip is found to be in the order of microsecond in the case of electric ignition by using optical fiber detection method, which shows that porous silicon has good firing reliability. In order to study the output pressure of the chip, a miniature closed burst was designed and manufactured. It was found that the output pressure increased with the increase of the ignition voltage, and the output pressure was only 0.22 MPA when the ignition voltage was 80 V. When the voltage reaches 200 V, the output pressure rises to 17.99 MPA. The reaction impulse of the chip under different ignition voltages is studied by using a torsion pendulum test device. The results show that the impulse of the porous silicon energy-containing chip is generally in the order of microcow second. In order to study the reaction performance of the porous silicon energetic chip under the constraint conditions, two kinds of orifice structures, straight hole and convergent expansion hole, are designed. It is found that at low ignition voltage, the porous silicon energetic chip is expected to be used in the field of micropropulsion. However, at high voltage, convergent and expanded holes can greatly increase the reaction impulse, reaching nearly 2mN-s at 200V, which is much higher than that of 914.52 渭 N 路s for straight holes and 728.42 渭 N-s for non-perforated ones.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ560;TB383.2
【参考文献】
相关期刊论文 前5条
1 宋登元;全硅光电子集成电路的研究进展[J];半导体光电;1998年03期
2 王新君,,赖宗声,王云珍;多孔硅的形成及其在表面微机械技术中的应用[J];半导体技术;1996年06期
3 文明;洪延姬;王军;王俊花;;冲击摆冲量测量的原理及精度分析[J];装备指挥技术学院学报;2005年06期
4 田斌,胡明,马家志,张之圣;多孔硅制备方法新进展及在微传感器中的应用[J];压电与声光;2003年06期
5 叶继飞;洪延姬;;基于扭秤的激光干涉差动测量微小冲量方法[J];应用光学;2013年06期
本文编号:1586168
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1586168.html