海藻酸钙及其共混改性复合膜的渗透性研究
本文选题:海藻酸钙 切入点:渗透 出处:《贵州大学》2015年硕士论文 论文类型:学位论文
【摘要】:海藻酸钠是从褐藻类植物中提取的天然多糖,是一种丰富以及对环境友好的海洋生物资源。随着材料学和生物医学的发展,越来越多的学者开始研究海藻酸钠,其应用前景十分广阔。本文以海藻酸钠水溶液为成膜剂,以钙离子为交联剂,通过溶剂挥发法,制备海藻酸钙薄膜,通过添加壳聚糖、糊精制备共混改性复合膜。考察影响海藻酸钙及其共混改性复合膜的渗透性影响因素,开展了以下工作:1.研究海藻酸钙薄膜及其共混改性复合膜的制备及其表征。以海藻酸钠、氯化钙、壳聚糖、糊精为原料制备海藻酸钙及其复合膜。FTIR结果显示,在海藻酸钙体系中加入壳聚糖后,特征吸收峰发生了位移,表明壳聚糖的游离氨基与海藻酸钠的羧基发生了相互作用,再在此基础上加入糊精后,薄膜的红外光谱无明显变化,说明加入的糊精并不与海藻酸钙、壳聚糖发生化学反应。通过SEM扫描结果分析,单纯的海藻酸钙薄膜表面有明显的孔洞,孔洞数量为10个,大小为0.5μm,加入壳聚糖后及糊精后,复合膜表面细密,无明显孔洞,断面图可以看到,它不同于纯海藻酸钙薄膜断面,其断面层一层一层的,像一束一束的纤维堆叠在一起,并没有交错链接,表面较为光滑。添加糊精后,薄膜表面同样细密,从其断面图可以看到,不像海藻酸钙/壳聚糖薄膜断面层层堆叠,而是一层一层的交错纵横的连接在一起,紧密结合,从横截面还能看到界面上有细小的颗粒状,有可能是糊精颗粒填充进海藻酸钙-壳聚糖体系中。2.对影响海藻酸钙及其复合膜的水蒸气渗透系数进行研究。结果显示,影响海藻酸钙薄膜的水蒸气扩散系数(WVP)最大的是与海藻酸钠交联的钙离子浓度,其次是交联时间。氯化钙交联时间从10min~50min进行考察,10min固化时WVP为1.2057×10-6 g/(m·h·Pa),20min时,WVP降低到8.3474×10-6 g/(m·h·Pa),20min后海藻酸钙薄膜WVP减小速度趋于平缓,对比20min时,交联50min的海藻酸钙薄膜WVP仅仅降低了3%。交联剂氯化钙的浓度从10g/L~50g/L进行考察,钙离子浓度为50g/L时WVP能下降到8.0244×10-6 g/(m·h·Pa),对比10g/L钙离子固化的薄膜,WVP降低了25%,而海藻酸钠的浓度对海藻酸钙薄膜WVP并无太大的影响,海藻酸钠浓度从1%增加到3%,水蒸气扩散系数从8.0087×10-6 g/(m·h·Pa)减小到7.9071×10-6 g/(m·h·Pa),仅减小了1%。通过实验得出海藻酸钙薄膜体系最优条件下得出水蒸气透过率为8.0244×10-6 g/(m·h·Pa)。在此基础上,添加壳聚糖,使其与海藻酸钠发生聚电解质反应,形成海藻酸钙-壳聚糖共混膜。壳聚糖的浓度从0~1%范围考察,浓度为0.75%时薄膜的WVP较纯海藻酸钙薄膜降低了10%,为了进一步增加膜的致密性,减小WVP,在海藻酸钙-壳聚糖复合膜中添加小分子的糊精作为填充剂,制备海藻酸钙-壳聚糖-糊精复合膜。在海藻酸钙-壳聚糖-糊精复合膜中白糊精浓度从0~2%范围考察,白糊精浓度为2%时,WVP降低了7.4%。3.利用Valia-Chien扩散池对海藻酸钙及其改性复合膜对四种香味物质的扩散性进行研究,并用静态顶空-气相色谱-质谱连用方法定量检测,分别考察海藻酸钙-壳聚糖、海藻酸钙-壳聚糖-糊精共混改性复合膜的组成对上述四种香味物质的渗透速率的影响。在海藻酸钙-壳聚糖复合膜中,需要考察的因素有壳聚糖浓度,随着水溶性壳聚糖的浓度增加,正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在复合膜中的渗透速率越来越小,正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在纯海藻酸钙膜中的扩散系数为3.18953×10-11 m2/s、1.733×10-11 m2/s、2.4638×10-11 m2/s、6.9553×10-12 m2/s,添加量为0.75%时,四种香味化合物正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在海藻酸钙薄膜中扩散系数为2.2426×10-11 m2/s、1.2994×10-11m2/s、1.7542×10-11 m2/s、5.6030×10-12 m2/s,扩散系数分别降低了29.69%、25.02%、28.80%、19.44%。在海藻酸钙-壳聚糖体系的基础上,加入麦芽糊精,制备海藻酸钙-壳聚糖-麦芽糊精复合膜,对其添加浓度从0~3%进行考察,当麦芽糊精添加量为2%时,海藻酸钙-壳聚糖复合膜,其四种香味物质正丙醇、乙酸乙酯、正丁醇、丁酸乙酯的扩散系数分别降低了15%、19.38%、16.78%、14.4%。4.除了考察海藻酸钙/壳聚糖/糊精复合膜中组分配比外,还考察了其他因素对其香味化合物扩散系数的影响:渗透液基质液体、糊精的种类、壳聚糖脱乙酰度、接收液中加入钙离子;实验用辛癸酸甘油酯配置与渗透液浓度相同的香味物质油溶液作为渗透液,对比同一浓度下,水作为基质配置的渗透液和油作为基质配置的渗透液中香味化合物的扩散系数,结果得出,正丙醇的扩散系数没有太大影响,而乙酸乙酯、正丁醇、丁酸乙酯的扩散系数分别降低了70%、25%、73%。不同类型的糊精替换麦芽糊精进行考察,选择β-环糊精、白糊精进行对比,结果显示β-环糊精的添加对于香味化合物的扩散系数的保香效果好于麦芽糊精和白糊精,乙酸乙酯、正丁醇、丁酸乙酯的扩散系数分别降低58.14%、45.5%、21.5%。
[Abstract]:Alginate is a natural polysaccharide extracted from brown algae plants, is an abundant and environmentally friendly marine biological resources. With the development of material science and biomedicine, more and more scholars began to study the sodium alginate and its application prospect is very broad. In this paper, the aqueous solution of sodium alginate as the film-forming agent, the calcium ion crosslinking agent by solvent evaporation method, calcium alginate film was prepared by adding chitosan, cyclodextrin, preparation of blend modified composite membrane. The influencing factors on the permeability effect of composite membrane modified calcium alginate and its blends, we conducted the following work: preparation of composite membrane modified calcium alginate film and 1. of its blends characterized by sodium alginate, calcium chloride and chitosan, dextrin as raw material to prepare calcium alginate composite membrane and.FTIR results showed that the addition of chitosan in calcium alginate system, characteristic absorption peak of the displacement That shows the interaction between free amino and carboxyl groups of alginate chitosan, then adding dextrin, the infrared spectra of the films has no obvious change, which indicates that adding dextrin is not with calcium alginate, chitosan chemical reaction. By analyzing the results of SEM scanning, the surface of pure calcium alginate film with visible hole the hole, number 10, size 0.5 m, after adding chitosan and dextrin, the surface of the composite membrane is fine, no obvious hole section can be seen, it is different from the pure calcium alginate film section, the section of layers, stacked like fiber bunches together. And there is no cross link, the surface is smooth. After adding dextrin, the film surface also fine, from the cross section can be seen as calcium alginate / chitosan film profile layers of the stack, but a layer of crisscross together From the cross section, closely, but also to see a small interface on the granular, possibly into calcium alginate chitosan particles filled dextrin.2. in the system of water vapour permeability coefficient and the effect of calcium alginate composite membrane. The results showed that the effect of water vapor diffusion coefficient of calcium alginate film (WVP) is the largest the concentration of calcium ion and sodium alginate cross-linked, followed by cross-linking time. Calcium chloride crosslinking time were investigated from 10min~50min, 10min curing WVP 1.2057 * 10-6 g/ (m h Pa), 20min, WVP reduced to 8.3474 * 10-6 g/ (m h Pa), 20min WVP reduced calcium alginate film slowly, compared with 20min, calcium alginate film WVP crosslinked 50min only reduces the concentration of 3%. crosslinking agent of calcium chloride were investigated from 10g/L~50g/L, calcium ion concentration of 50g/L WVP decreased to 8.0244 x 10-6 g/ (m h Pa), compared with 10g/L calcium Film ion curing, WVP decreased by 25%, while the influence of the concentration of sodium alginate and calcium alginate film is too big for WVP no, sodium alginate concentration increased from 1% to 3%, the diffusion coefficient of water vapor from 8.0087 * 10-6 g/ (m h Pa) is reduced to 7.9071 * 10-6 g/ (M H Pa) only. Reduce the 1%. through the experiment of calcium alginate film system under optimal conditions of water vapor transmission rate of 8.0244 * 10-6 g/ (M - H - Pa). On this basis, adding chitosan, the polyelectrolyte reaction and formation of sodium alginate, calcium alginate chitosan blend membrane. The concentration of chitosan from the perspective of 0~1% the scope of concentration decreased by 10% to 0.75% compared with the pure calcium alginate film WVP film, in order to further increase the compactness of the film decreases WVP, adding small molecule dextrin in calcium alginate chitosan composite membrane as filler, preparation of calcium alginate chitosan cyclodextrin composite film in the sea. The white dextrin concentration of calcium alginate - chitosan - cyclodextrin composite membrane is investigated from the 0~2% range, the white dextrin concentration is 2%, WVP decreased by 7.4%.3. using Valia-Chien diffusion pool of calcium alginate and its modified composite membrane diffusion of four kinds of flavor substances were studied. The quantitative mass spectrometry method is used for static headspace gas chromatography chromatography detection, respectively. The effect of calcium alginate chitosan, effect of calcium alginate chitosan composite film composed of modified cyclodextrin blend of the four kinds of flavor substances. In the permeation rate of calcium alginate chitosan composite membrane, need to study the factors of chitosan concentration, with the increase of the concentration of water soluble chitosan is alcohol, ethyl acetate, n-butanol, ethyl butyrate and permeation rate in the composite film of the smaller, n-propyl alcohol, ethyl acetate, n-butanol, ethyl butyrate diffusion coefficient in pure calcium alginate film in 3.18953 * 10-11 m2/s, 1.7 33 * 10-11 * 10-11 m2/s, 2.4638 m2/s, 6.9553 x 10-12 m2/s, adding 0.75%, four kinds of aroma compounds of n-propanol, n-butanol, ethyl acetate, ethyl butyrate in calcium alginate film diffusion coefficient was 2.2426 * 10-11 m2/s, 1.2994 x 10-11m2/s, 1.7542 x 10-11 x 10-12 m2/s, 5.6030 m2/s, 29.69% the diffusion coefficient decreases, respectively 25.02%, 28.80%, 19.44%. based on calcium alginate chitosan system, adding maltodextrin, preparation of calcium alginate - chitosan - maltodextrin composite membrane, the concentration of maltodextrin from 0~3%, when the dosage is 2%, calcium alginate chitosan composite the film, the aroma substances of n-propanol, n-butanol, ethyl acetate, ethyl butyrate diffusion coefficients were decreased by 15%, 19.38%, 16.78%, 14.4%.4. in addition to study calcium alginate / chitosan / cyclodextrin composite film group distribution ratio, it also examines other factors on the Effect of aroma compounds: penetrant diffusion coefficient matrix liquid, dextrin type, the degree of deacetylation of chitosan and calcium receiving liquid; experimental wasdescribed configuration and penetration of aroma oil solution concentration the same as permeate, compared with the same concentration, as water penetration liquid and oil matrix as the configuration of the diffusion coefficient, the configuration of the aroma permeate matrix compounds showed that diffusion coefficient of n-propanol has little effect, while ethyl acetate, n-butanol, ethyl butyrate diffusion coefficients were decreased by 70%, 25%, 73%. Different types of dextrin replace malt dextrin were investigated. The choice of beta cyclodextrin and the white dextrin were compared, the results showed that with the addition of beta cyclodextrin to the diffusion coefficient of aroma compounds of incense is better than maltodextrin and white dextrin, ethyl acetate, n-butanol, the diffusion coefficient of Ding Suanyi ester respectively. Reduce 58.14%, 45.5%, 21.5%.
【学位授予单位】:贵州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 蒋兴仁;海藻及海藻酸的性质和应用[J];食品工业科技;1982年03期
2 任丽;陈晓凤;;聚吡咯/海藻酸钙导电微球的制备与表征[J];精细化工;2008年12期
3 包永华;董明盛;;液芯海藻酸钙包囊固定化技术[J];中国酿造;2008年21期
4 俞定安;海藻酸钙固定化产黄青霉菌株的形态学及其在青霉素发酵上的应用[J];国外药学(抗生素分册);1987年01期
5 杨励生;曹淑娟;;提高海藻酸钙凝胶球强度的试验[J];江苏食品与发酵;1988年03期
6 衣洪福;任东文;包德才;雄鹰;姚文艳;王为;马小军;;放射自显影海藻酸钙栓塞微球的制备[J];功能材料;2006年12期
7 吴文果;黄晓楠;王士斌;妮莎;刘源岗;;乳化法制备海藻酸钙/聚组氨酸微胶囊[J];化工进展;2009年04期
8 王华明;王旭伟;卢凌彬;林承跃;;海藻酸钙软骨材料的凝胶化过程研究[J];化工科技;2009年03期
9 金离尘;海藻纤维(Alginate Rayons)[J];纺织导报;1988年14期
10 刘丹;王鹏程;刘昕;李明光;齐宪荣;;多柔比星海藻酸钙微球的制备及其载药、释药性质的研究[J];中国新药杂志;2006年15期
相关会议论文 前10条
1 李欣;陈立仁;;海藻酸钙凝胶粒子的制备与性能研究[A];甘肃省化学会二十六届年会暨第八届中学化学教学经验交流会论文集[C];2009年
2 石军;刘小培;孙希孟;曹少魁;;温度响应杂化海藻酸钙微球的智能性药物释放[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
3 徐飞海;王士斌;侯越;黄晓楠;翁连进;;海藻酸钙/聚组氨酸微胶囊体外释放性能的初步考察[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
4 许培;王翔;;海藻酸钙水凝胶微球悬浮液的流变学特性及其影响因素的研究[A];第十届全国生物力学学术会议暨第十二届全国生物流变学学术会议论文摘要汇编[C];2012年
5 成洪波;应方微;魏花;李志;;兔眼球后注射海藻酸钙—壳聚糖—海藻酸钙微囊的组织相容性研究[A];中华医学会第十二届全国眼科学术大会论文汇编[C];2007年
6 许培;王翔;;海藻酸钙水凝胶微球悬浮液与全血的流变学性质比较[A];第十届全国生物力学学术会议暨第十二届全国生物流变学学术会议论文摘要汇编[C];2012年
7 王敬花;陈龙煈;孟祥英;孙红;赵修松;;海藻酸钙多孔结构薄膜的制备[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
8 冯仁蕊;欧阳五庆;赵元;;二氢吡啶海藻酸钙凝胶小球的制备工艺研究[A];中国畜牧兽医学会兽医药理毒理学分会第十次研讨会论文摘要集[C];2009年
9 喻翠云;殷博成;柳明;程巳雪;卓仁禧;;海藻酸钙微粒给药体系对抗肿瘤药物的缓释研究[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
10 张争争;石军;齐雯妍;曹少魁;;高浓度CO_2下海藻酸钙/CaCO_3仿生矿化微球的可控[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
相关重要报纸文章 前1条
1 记者 叶桂华 通讯员 张莉 周静;我市企业一专利喜获国家特别金奖[N];泰州日报;2007年
相关博士学位论文 前5条
1 荣晶晶;凝血酶-海藻酸钙复合介入栓塞止血剂的研制及应用基础研究[D];第三军医大学;2015年
2 郝晓丽;海藻酸钙冻干膜及海藻酸钙基互穿网络膜材料的制备与性能研究[D];青岛大学;2010年
3 刘袖洞;膜乳化内部凝胶化过程及海藻酸钙凝胶珠性能研究[D];中国科学院研究生院(大连化学物理研究所);2002年
4 陈益清;海藻酸-壳聚糖-海藻酸离子取代凝胶[D];天津大学;2003年
5 谭荣伟;海藻酸基可注射骨修复材料的研究[D];清华大学;2011年
相关硕士学位论文 前10条
1 饶平;双网络水凝胶的制备及其力学行为研究[D];浙江大学;2015年
2 刘梅;基于离心微流控系统制备海藻酸钙粒子的研究[D];东北大学;2014年
3 叶世著;海藻酸钙及其共混改性复合膜的渗透性研究[D];贵州大学;2015年
4 林志群;载纳米银海藻酸钙制备、抗菌性能、促创面愈合及生物相容性的研究[D];南方医科大学;2016年
5 刘燕华;生物纤维素/海藻酸复合膜的制备及性能研究[D];武汉纺织大学;2011年
6 吴燕;海藻酸铜纤维结构性能及抗菌机理研究[D];青岛大学;2011年
7 闻林刚;基于配位作用的海藻酸镧纤维的制备[D];东华大学;2016年
8 汪涛;海藻酸钙敷料促进大鼠创面愈合的作用及机制研究[D];苏州大学;2015年
9 袁磊;半乳糖化壳聚糖/海藻酸钙肝组织工程支架材料的研究[D];武汉理工大学;2007年
10 李阳;基于海藻酸钙水凝胶的多层球的制备及应用研究[D];中国海洋大学;2012年
,本文编号:1600702
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1600702.html