当前位置:主页 > 科技论文 > 材料论文 >

复合材料厚壁壳体内外协同固化过程仿真分析

发布时间:2018-03-16 04:22

  本文选题:纤维复合材料 切入点:厚壁壳体 出处:《哈尔滨理工大学》2015年硕士论文 论文类型:学位论文


【摘要】:管壁较薄的缠绕成型的壳体通常使用传统的外固化工艺成型。随着复合材料壳体工作压力的提高和特殊工程的需要,厚壁复合材料壳体也得到进一步的应用,,如高压管道、储能飞轮等等。在采用传统固化工艺对厚壁壳体成型时,壳体固化所需加热时间过长,因此耗能高、效率低,不但大大提高了成本,而且由于多余树脂不能及时排除,因此难以保证产品质量。 为实现厚壁复合材料壳体的高效优质固化,本文采用内外协同固化新工艺,即将浸渍过的树脂纤维按预定张力、预定厚度和预定缠绕速度在芯模上缠绕后,将蒸汽通入到金属芯模内,将被加热金属芯模的热量传递给纤维树脂缠绕层,同时在外部使用碳纤维红外线石英电热管对其加恒温。新工艺对于厚壁复合材料壳体的成型具有明显的优势:可加快厚壁壳体成型,从而缩短成型时间;更加有利于纤维持续浸渍、树脂内气泡、多余树脂及固化放热产生的能量的排出及复合材料密实;可解决局部先于周围固化导致的缺胶或分层等质量问题。 本文对采用蒸汽进行芯模加热的内外协同固化成型工艺进行了研究,说明了内外协同固化工艺的原理,建立了厚壁壳体内外协同固化过程的传热模型和固化动力学模型,利用有限元软件ANSYS和APDL语言开发了厚壁壳体内外协同固化过程数值模拟程序,并以二维有限元模型为例进行了实验验证和数值模拟,分析壳体内外协同固化过程中温度和固化度的分布及其变化历程。以三维有限元模型为例分析壳体内外协同固化过程中应变的分布及其变化历程。对新工艺的数值模拟结果表明:随着外温和升温速率的不断增大,中心节点的温度、固化度和应变波动较大;随着缠绕速度的增大,中心节点的温度、固化度和应变波动变小。该研究为内外协同固化工艺的优化提供理论依据。
[Abstract]:The thin winding shell of the pipe wall is usually formed by the traditional external solidification process. With the increase of the working pressure of the composite shell and the need of special engineering, the thick-walled composite shell has been further applied, such as high pressure pipe, Energy storage flywheels and so on. When the traditional curing process is used to form the thick-walled shell, the heating time required for the solidification of the shell is too long, therefore, the energy consumption is high and the efficiency is low, which not only greatly increases the cost, but also because the excess resin can not be eliminated in time. Therefore, it is difficult to guarantee the quality of the product. In order to realize the high efficiency and high quality curing of thick wall composite shell, a new process of internal and external co-curing is adopted in this paper, that is, the impregnated resin fiber is wound on the core mould according to the predetermined tension, the predetermined thickness and the predetermined winding speed. The steam is passed into the metal core mold, and the heat of the heated metal core mold is transferred to the filament resin winding layer. At the same time, the carbon fiber infrared quartz electroheating tube is used to keep the temperature constant. The new technology has obvious advantages for the thick wall composite shell forming: it can accelerate the thick wall shell forming, thus shorten the forming time; It is more favorable to the continuous impregnation of the fiber, the discharge of the energy generated by the bubble in the resin, the excess resin and the curing exothermic heat, and the compactness of the composite material, which can solve the quality problems such as the lack of glue or delamination caused by the local curing before the surrounding curing. In this paper, the internal and external co-curing process of core-die heating with steam is studied, the principle of internal and external co-curing process is explained, and the heat transfer model and curing dynamics model of the inner and outer co-curing process of thick wall shell are established. A numerical simulation program for the cosolidification process of thick wall shell is developed by using finite element software ANSYS and APDL, and the experiment and numerical simulation are carried out by taking the two-dimensional finite element model as an example. The distribution and variation of temperature and degree of solidification in and out of the shell are analyzed. Taking the three-dimensional finite element model as an example, the distribution and variation of strain in the process of co-curing inside and outside the shell are analyzed. The simulation results show that with the increasing of the rate of external temperature and temperature rise, The temperature, curing degree and strain of the central node fluctuate greatly, and the temperature, curing degree and strain fluctuation of the central node become smaller with the increase of winding speed. This study provides a theoretical basis for the optimization of the internal and external co-curing process.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB332

【参考文献】

相关期刊论文 前10条

1 杨正林,陈浩然;层合板在固化全过程中瞬态温度场及固化度的有限元分析[J];玻璃钢/复合材料;1997年03期

2 寇哲君;戴棣;曹正华;;复合材料结构固化变形预测[J];材料工程;2007年S1期

3 郭战胜,杜善义,张博明,武湛君,李方,傅求理;先进复合材料用环氧树脂的固化反应和化学流变[J];复合材料学报;2004年04期

4 谭华,晏石林;热固性树脂基复合材料固化过程的三维数值模拟[J];复合材料学报;2004年06期

5 任明法,王荣国,陈浩然;具有金属内衬复合材料纤维缠绕容器固化过程的数值模拟[J];复合材料学报;2005年04期

6 张纪奎;郦正能;关志东;程小全;刘涛;;复合材料层合板固化压实过程有限元数值模拟及影响因素分析[J];复合材料学报;2007年02期

7 张纪奎;郦正能;关志东;程小全;王军;;热固性复合材料固化过程三维有限元模拟和变形预测[J];复合材料学报;2009年01期

8 孔德群;裴艳敏;邢立业;崔焘;李珍;;储能飞轮转子用金属材料的研究现状[J];储能科学与技术;2014年01期

9 陈祥宝;邢丽英;周正刚;;树脂基复合材料制造过程温度变化模拟研究[J];航空材料学报;2009年02期

10 杨慧;;纤维缠绕复合材料固化工艺过程数值研究[J];机械强度;2008年02期



本文编号:1618313

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1618313.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户157f5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com