电化学沉积制备纳米铝热薄膜的研究
发布时间:2018-03-17 17:43
本文选题:离子液体 切入点:电化学沉积 出处:《南京理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:本文以氯化1-乙基-3-甲基咪唑—三氯化铝(EMIC-AlCl_3)离子液体为Al的电还原沉积液,进行了电化学沉积制备纳米铝热薄膜的研究。首先通过配置得到EMIC-AlCl_3离子液体,并以FTO导电玻璃为基板研究了Al的沉积规律。而后通过胶晶模板法分别制备得到了三维有序Fe_2O_3薄膜及Co_3O_4纳米线薄膜,应用水热法在泡沫镍上制备得到了Co_3O_4纳米线薄膜,采用电化学沉积的方式将Al沉积到各氧化物薄膜上,制备得到了氧化物/Al纳米铝热薄膜。采用XRD、SEM、TEM、DSC及激光点火等手段对制备得到的样品进行了相关表征及测试。获得的主要研究结果如下:配置得到的EMIC-AlCl_3离子液体中,Al2Cl7-能够稳定还原沉积制备Al单质的电压及电流密度分别为0.378V及1mA·cm-2。当电流为70mA时,可在FTO导电玻璃上制备得到纯度较高、致密性较好的A1,此时A1的沉积速率为0.8μm·min-1。以聚苯乙烯(PS)球乳液的稀释液制备得到胶晶模板,以厚度为2μm的胶晶模板制备得到了厚度为1.5μm的三维有序Fe_2O_3薄膜。通过电化学沉积A1制得了Fe203/Al纳米铝热薄膜,但沉积的A1无法在Fe_2O_3骨架上直接沉积而只能首先在FTO导电玻璃基板上进行沉积,而后逐层向外沉积并填充于Fe_2O_3骨架结构中,直至将整个Fe_2O_3骨架填充完全。这种复合方式使得Fe_2O_3/Al纳米铝热薄膜的热性能较差,放热量最高仅为 222.27J·g-1。以胶晶模板结合草酸的后续处理成功制备得到了Co_3O_4纳米线。电化学沉积的Al能够在具有一定导电性的Co_3O_4纳米线表面实现沉积。制备得到的Co_3O_4/Al纳米铝热薄膜的放热量可达724.64 J·-1,远高于上述制得的Fe_2O_3/Al纳米铝热薄膜的反应放热量,激光点火测试表明该铝热薄膜具有发火能力,且发火持续时间可达432.9μs。以水热法在泡沫镍上制备得到了直立性好、分布均匀的Co_3O_4纳米线。电化学沉积的Al可在Co_3O_4纳米线上直接沉积并最终制得Co_3O_4/Al纳米铝热薄膜。激光点火后的火焰高度及火焰宽度比模板法制备得到的要高。恒电流起爆测试结果表明,负载Co_3O_4/Al纳米铝热薄膜的泡沫镍做成的点火桥通电后可发火,且具有一定的发火强度,可作为点火器件来研究和应用。
[Abstract]:In this paper, the preparation of nanocrystalline aluminothermic films by electrochemical deposition of 1-ethyl-3-methylimidazolium chloride (1-ethyl-3-methylimidazolium trichloride) -EMIC-AlCl3) ionic liquid as Al solution was studied. Firstly, EMIC-AlCl_3 ionic liquid was obtained. The deposition rule of Al on FTO conductive glass substrate was studied, and then three dimensional ordered Fe_2O_3 film and Co_3O_4 nanowire film were prepared by colloidal crystal template method. Co_3O_4 nanowire films were prepared on nickel foam by hydrothermal method. Al was deposited on various oxide films by electrochemical deposition. The oxide / Al nanocrystalline aluminothermic thin films were prepared. The samples were characterized and tested by means of XRDX Sem Tem DSC and laser ignition. The main results obtained are as follows: Al2Cl7-. The voltage and current density of Al prepared by stable reduction deposition are 0.378V and 1mA 路cm-2.When the current is 70mA, A1 with high purity and good densification could be prepared on FTO conductive glass, and the deposition rate of A1 was 0.8 渭 m 路min-1. The colloidal template was prepared from the dilute solution of polystyrene (PS) ball emulsion. Three-dimensional ordered Fe_2O_3 thin films with thickness of 1.5 渭 m were prepared by colloidal template with thickness of 2 渭 m. Fe203/Al nanocrystalline aluminothermic films were prepared by electrochemical deposition of A1. However, the deposited A1 can not be deposited directly on the Fe_2O_3 skeleton. It can only be deposited on the FTO conductive glass substrate first, and then deposited layer by layer and filled in the Fe_2O_3 skeleton structure. Until the whole Fe_2O_3 skeleton is filled, the thermal properties of the Fe_2O_3/Al nanocrystalline aluminothermic films are poor. The maximum heat release was 222.27J 路g-1.The Co_3O_4 nanowires were successfully prepared by gel crystal template and oxalic acid follow-up treatment. The electrochemical deposition of Al on the surface of Co_3O_4 nanowires with certain electrical conductivity could be realized. The Co_3O_4/Al prepared was obtained. The heat release of nanocrystalline aluminothermic films can reach 724.64 J 路-1, which is much higher than the reactive heat release of Fe_2O_3/Al nanocrystalline aluminothermic films. The laser ignition test shows that the film has the ability to ignite, and the firing duration can reach 432.9 渭 s. Co_3O_4 nanowires with uniform distribution. Co_3O_4/Al nanocrystalline aluminothermic films can be directly deposited on Co_3O_4 nanowires by electrochemical deposition. The flame height and flame width after laser ignition are higher than those prepared by template method. The flow initiation test results show that, The ignited bridge made of nickel foam loaded with Co_3O_4/Al nanocrystalline aluminothermic film can be ignited after it is electrified and has a certain ignition intensity, so it can be used as a igniter to study and apply.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ560.7;TB383.1
【相似文献】
相关期刊论文 前10条
1 罗志辉;韦庆敏;刘荣军;梁春杰;陈渊;;摩擦辅助电化学沉积技术的研究进展[J];电镀与环保;2013年02期
2 马臣;曲立杰;王颖慧;尹树春;;电化学沉积仿生羟基磷灰石涂层的研究现状与展望[J];佳木斯大学学报(自然科学版);2006年01期
3 雷卫宁;刘维桥;曲宁松;王江涛;;超临界电化学沉积技术的研究进展[J];材料工程;2010年11期
4 李超,曹传宝,吕强,张家涛,项顼,朱鹤孙;氮化碳薄膜的电化学沉积及其电阻率研究[J];功能材料与器件学报;2004年01期
5 王雅琼,傅相林,许文林,李敏,张小兴;超声对铜电化学沉积速度及沉积产物结构的影响[J];过程工程学报;2004年04期
6 计陈红;郭亚军;褚联峰;;电化学沉积制备多孔羟基磷灰石泡沫复合材料[J];广州化工;2010年12期
7 张国庆,郭鹤桐;金属在半导体上的激光电化学沉积[J];电镀与精饰;1994年04期
8 尹振,翟玉春;室温离子液体在电化学沉积中的研究进展[J];有色矿冶;2005年S1期
9 吴U,
本文编号:1625797
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1625797.html