用于蛋白质传输分离的微纳米通道体系的研究
本文选题:微流控芯片 切入点:抗蛋白吸附 出处:《青岛大学》2017年硕士论文
【摘要】:蛋白质组学一直是科学家们研究生命活动的重要课题,由于蛋白质分离分析的研究过程耗时耗力,针对现有的微流控芯片电泳存在的不易便携、高压安全性、微通道易吸附生物大分子的问题和纳滤膜分离技术存在的分子传输、功能化等问题,本论文主要侧重于改进蛋白质分离和传输方法,主要工作和结论如下:1.利用模板浇铸法和干膜刻蚀法制备一种便携式聚二甲基硅氧烷(PDMS)微流控芯片电泳装置,该种微芯片的通道直径为375μm,有效分离长度为25 mm,实验结果表明该芯片与电化学工作站联用后可在低电压下实现对牛血清蛋白(BSA)、细胞溶菌酶(Lys)和细胞色素C(Cyt-c)的快速基线分离,与传统的毛细管电泳仪相比,本装置不仅体积小、质量轻、成本低、易便携,而且所用电压较低,不需携带常规的大型高压供电器,使用过程方便安全节能。2.利用光刻法制备一类“夹心式”聚乙二醇(PEG)基质的微流控芯片电泳装置,这种PEG微通道尺寸可自由调控,且材料本身具有较好的抵制蛋白吸附的能力,不需附加的通道表面修饰过程,实验结果证明,这类芯片电泳可在短时间内实现对蛋白质Cyt-c,Lys和BSA的分离分析,具有良好的重现性和稳定性。3.基于化学气相沉积(CVD)法制备垂直碳纳米管(CNT)阵列的滤膜和表面原子转移自由基聚合法(SI-ATRP)在滤膜表面接枝温度敏感型高分子聚N-异丙基丙烯酰胺(PNIPAM)和磁性纳米颗粒四氧化三铁(Fe3O4),制备一种温度响应型和温度-磁场双响应型的碳纳米管智能滤膜,其中CNT内15 nm的管道作为滤膜传输离子和生物分子的唯一通道,实验结果证明,接枝的PNIPAM和Fe3O4链可随外界温度和磁场变化发生构型改变,以此来控制滤膜的管径大小,可实现离子传输和不同尺寸蛋白质的分离的可控控制,即智能滤膜的可控“开-关”功能,这将在未来生物分离过滤、生物传感器等领域有一定的潜力。
[Abstract]:Proteomics has always been an important subject for scientists to study life activities. Because the research process of protein separation and analysis is time-consuming and labor-intensive, the existing microfluidic chip electrophoresis is difficult to carry and high pressure safety. Microchannels are easy to adsorb biomolecules, and nanofiltration membrane separation has many problems, such as molecular transport and functionalization. In this paper, we focus on improving the methods of protein separation and transport. The main work and conclusions are as follows: 1. A portable polydimethylsiloxane (PDMS) microfluidic chip electrophoresis device was prepared by template casting and dry film etching. The channel diameter of the microchip was 375 渭 m and the effective separation length was 25 mm. The experimental results showed that the microchip combined with electrochemical workstation could realize the rapid baseline separation of bovine serum protein (BSA), lysozyme (Lys) and cytochrome C (Cyt-c) at low voltage. Compared with the traditional capillary electrophoresis instrument, the device is not only small in volume, light in weight, low in cost, easy to carry, but also low in voltage, so it does not need to carry conventional large high-voltage electrical appliances. The process is convenient, safe and energy saving. 2. A kind of microfluidic chip electrophoresis device with "sandwich type" peg matrix is prepared by photolithography. The size of PEG microchannel can be adjusted freely, and the material itself has good resistance to protein adsorption. No additional channel surface modification is required. The experimental results show that this kind of chip electrophoresis can be used for the separation and analysis of protein Cyt-cu Lys and BSA in a short time. It has good reproducibility and stability. 3. Preparation of perpendicular carbon nanotubes (CNT) arrays by chemical vapor deposition (CVD) method and surface atom transfer radical polymerization (SI-ATRP) grafted onto the surface of the filter membrane by temperature sensitive polymer poly (N-isopropylene-n-isopropylene-n-isopropyl). PNIPAM) and Fe _ 3O _ 4O _ 4 magnetic nanoparticles were used to prepare a kind of carbon nanotube intelligent filter membrane with temperature response type and temperature magnetic field double response type. Among them, the 15nm tube in CNT is the only channel for the transport of ions and biomolecules. The experimental results show that the PNIPAM and Fe3O4 chains can change with the change of external temperature and magnetic field, so as to control the diameter of the membrane. It can realize the controllable control of ion transport and separation of proteins of different sizes, that is, the controllable "on-off" function of intelligent filter membrane, which will have certain potential in the field of biological separation and filtration, biosensor and other fields in the future.
【学位授予单位】:青岛大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1;TQ931
【参考文献】
相关期刊论文 前10条
1 耿利娜;全宗良;侯妮;陈娟;高丽娜;徐建栋;胡定煜;李勤;邓玉林;;蛋白质分离玻璃微流控芯片的制作方法[J];北京理工大学学报;2013年04期
2 赵斌;张磊;王现英;杨俊和;唐志红;杨光智;邱汉迅;何星;;基于碳纳米管的纳滤膜研究进展[J];新型炭材料;2011年05期
3 于冰;任玉敏;丛海林;陈昭晶;张立新;马真真;;微流控芯片电泳的研究进展[J];分析测试学报;2011年09期
4 季伙燕;丛辉;王惠民;金庆辉;赵建龙;;表面活性剂动态修饰PDMS的研究进展[J];材料导报;2010年S2期
5 许斌;李佩;;微流控芯片及其应用[J];记录媒体技术;2009年03期
6 李万超;赵义平;陈莉;冯霞;李冬美;李媛媛;;温度响应性聚合物膜的研究进展[J];材料导报;2008年10期
7 翁雪香;陈建荣;缪吉根;吴小华;;聚合物微流控芯片的简易热压制作及其应用[J];光谱实验室;2008年04期
8 叶嘉明;李明佳;庄金亮;周勇亮;;模板电解法快速制作玻璃微流控芯片[J];功能材料与器件学报;2008年02期
9 李孟春;;聚二甲基硅氧烷微流控芯片的制备[J];传感器与微系统;2007年09期
10 王辉,黄淮青,戴忠鹏,高雁,马波,王利,白吉玲,林炳承;自制玻璃微流控芯片及其基本性能考察[J];高等学校化学学报;2005年11期
相关会议论文 前1条
1 冯波;梅林;程正学;张蓉;夏之宁;;激光刻蚀成模快速制作PDMS微流控芯片[A];第三届全国微全分析系统学术会议论文集[C];2005年
相关博士学位论文 前4条
1 程和勇;微流控芯片—等离子体质谱的联用研究[D];浙江大学;2012年
2 赵金金;芯片电泳分离—电化学发光检测联用研究[D];苏州大学;2011年
3 杨秀晗;微分离分析新方法研究[D];复旦大学;2006年
4 周小棉;芯片电泳系统研制与应用研究[D];中国科学院研究生院(大连化学物理研究所);2005年
相关硕士学位论文 前2条
1 任瑞敏;PET径迹—刻蚀膜表面ATRP接枝制备pH/温度响应性分离膜[D];北京化工大学;2011年
2 温敏;塑料微流控芯片微通道热压成形及键合工艺研究[D];大连理工大学;2005年
,本文编号:1663429
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1663429.html