缠绕成型碳纤维混杂增强复合材料薄壁筒的碰撞吸能特征
本文选题:轻量化 + 缠绕成型 ; 参考:《东华大学》2017年硕士论文
【摘要】:自从机动车类交通工具产生及发展以来,使用者对汽车安全问题一直甚为关心,同时汽车安全问题一直困扰着相关的行业。国家统计局的数据显示,近十年来民用汽车的拥有量保持大幅度的增长趋势。由于我国交通道路情况的不断改善、交通监管及交通知识普及的力度增大,交通事故的发生数呈现下降趋势,但始终维持在20万起以上。针对汽车的被动安全性,汽车工业做出了很多努力,目前整车结构对于交通事故中人员的损伤具有一定的防护能力。但专家学者不止于此,为汽车工业的进一步发展不断思考及创新。近年来,空气污染成为困扰我国居民的严重危害,环境问题日益突出,基数巨大的马路空气污染制造者——机动车造成的环境问题也日益引发全球的关注。如何在不降低汽车使用性能的前提下,减少发动装置排放的有害气体含量成为引领汽车领域的一个全新的课题。随之而提出的汽车轻量化概念为汽车行业提供了现实的解决方案。新材料行业的不断发展为汽车轻量化提供了强有力的支持。“以塑代钢”即用塑料代替钢材的使用,因为纤维增强复合材料具有高强、高模及质轻等特点,正在逐渐取代合金和木材,用于航天、汽车、建筑、健身器材等领域。纤维增强复合材料的成型工艺很大程度上决定了其性能及其产品的使用条件,本实验选取的成型的工艺为缠绕成型。其具有制造成本低,制品质量高度可重复等优点。所用增强材料为无捻粗纱材料,无须纺织,减少了工序,降低了成本。用于汽车的能量吸收管件的能量吸收性能的主要测试方法有准静态压缩试验和动态冲击试验,压缩破坏过程中,复合材料通过分层、开裂和纤维的断裂吸收能量。为了获得高能量吸收性能的材料,往往期望管件以渐进稳定的破坏形式破坏。本实验选取碳纤维、芳纶纤维、玻璃纤维及环氧树脂为原料,在缠绕成型中统一制作成三层结构的管件。中间层纤维取向接近90°,起到轴向力的主要承担作用。最外层和最内层纤维取向接近于0°,主要起到束缚控制中间层裂纹产生及扩展的作用。基于前人的研究,设计了五种结构的几何形状为圆形复合材料管件。由于能量吸收部件安装部位靠近发动机,本实验对各试样进行了温度处理(100℃下处理200h)。约50mm高的试样一端保持水平,另一端打磨出45°的倒角,水平端放置于压缩试验台上进行压缩试验。压缩试验包括准静态压缩试验及动态冲击试验。破坏后的试样通过树脂包埋固定形态,切割打磨后观察且截面形态,辅助分析其破坏机制。实验结果表明,相同试样在准静态压缩中表现出较高的能量吸收值,该实验管件属于速度敏感型,表现为在准静态压缩与动态冲击状态下表现出不同的能量吸收特征。未经温度处理试样实验结果显示碳纤维增强管件的能量吸收性能优于玻璃纤维增强管件及碳/芳纶纤维增强管件。而碳/芳纶增强管件在经过温度处理后,能量吸收性能得到提升。在五种类型的纤维增强复合材料管件中,经过温度处理的A/C1.6’复合材料管件(芳纶纤维/碳纤维/芳纶纤维:0.15mm(88°)/1.66mm(10°)/0.83mm(88°))表现出最为优异的能量吸收性能(Es值最高):在准静态压缩试验中为98 kJ/kg,在落塔冲击试验中为82 kJ/kg。根据微观截面图片,分析得到碳/芳纶纤维增强管件在经过温度处理后中央裂纹较未经温度处理的试样短,叶片的曲率也较大。所有的试样表现为开花破坏模式。
[Abstract]:Since the emergence and development of vehicle vehicles, users have been very concerned about the problem of automobile safety. At the same time, the problem of automobile safety has been plaguing the related industries. The data of the National Bureau of statistics show that the ownership of civilian cars has maintained a large increase in the last ten years. The traffic supervision and the popularization of traffic knowledge have increased, the number of traffic accidents is declining, but it has been maintained over 200 thousand. In view of the passive safety of the automobile, the automobile industry has made a lot of efforts. At present, the vehicle structure has certain protection ability for the damage of personnel in traffic accidents. In recent years, air pollution has become a serious harm to the residents of our country, and environmental problems are becoming more and more serious. The environmental problems caused by the large number of road air pollution makers - motor vehicles have also become more and more concerned about the world. Reducing the harmful gas content emitted by the engine has become a new topic in the automotive industry. The concept of automotive lightweight provides a realistic solution for the automotive industry. The continuous development of the new material industry provides a strong support for the automotive lightweight. The use of steel, because the fiber reinforced composites have the characteristics of high strength, high modulus and light quality, is gradually replacing alloy and wood, used in space, automobile, building, fitness equipment and other fields. The molding technology of fiber reinforced composites determines its performance and the use conditions of its products to a great extent. It has the advantages of low manufacturing cost and high repeatability of the quality of the products. The reinforced material used as the roving material, without the need of textile, reduces the process and reduces the cost. The main testing methods used for energy absorption performance of energy absorption pipes for automobile include quasi static compression test and dynamic impact test, compression failure. During the process, the composite material absorbs energy by delamination, cracking and fracture of fiber. In order to obtain high energy absorption properties, the tube is often expected to be destroyed in a progressive and stable form. In this experiment, carbon fiber, aramid fiber, glass fiber and epoxy resin were selected as raw materials, and three layers of pipe fittings were made in winding molding. The fiber orientation of the middle layer is close to 90 degrees, which plays the main role of the axial force. The orientation of the outer and the most inner fiber is close to 0 degrees. It mainly plays the role of the crack generation and expansion of the middle layer. Based on the previous study, the geometry of the five structures is designed as circular composite pipe. The position is close to the engine, the sample is treated with temperature (200H at 100 degrees C). The one end of about 50mm high is kept level, the other end is grinding out the chamfering of 45 degrees. The horizontal end is placed on the compression test bench for compression test. The compression test includes the quasi static compression test and the dynamic impact test. The specimen after the failure is passed through the resin. The experimental results show that the same specimen has a high energy absorption value in quasi static compression, and the experimental tube is of a velocity sensitive type, which shows different energy absorption characteristics under quasi static compression and dynamic impact state. The results of the temperature treated sample show that the energy absorption performance of the carbon fiber reinforced pipe is better than that of the glass fiber reinforced tube and the carbon / aramid fiber reinforced tube. The carbon / aramid reinforced pipe is improved by the temperature treatment. In the five types of fiber reinforced composite pipes, the temperature treated A/ The C1.6 'composite pipe (aramid fiber / carbon fiber / aramid fiber: 0.15mm (88) /1.66mm (10)) /0.83mm (88 degrees)) showed the most excellent energy absorption performance (Es value): 98 kJ/kg in the quasi-static compression test and 82 kJ/ kg. in the drop tower impact test for the carbon / aramid fiber reinforced pipe. After temperature treatment, the central crack is shorter than that without temperature treatment, and the curvature of the blade is larger. All the specimens show the pattern of flowering failure.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB332
【相似文献】
相关期刊论文 前10条
1 娄红莉;郭兴峰;;带织物层叠缠绕玻璃钢管的设计与缠绕成型[J];产业用纺织品;2013年02期
2 徐国平,彭葵,王根和;中碱缠绕纱在玻璃钢缠绕成型中的应用[J];玻璃钢/复合材料;1992年05期
3 桂美里;玻璃钢高强电绝缘管的研制[J];玻璃钢/复合材料;1991年04期
4 徐涛清;热塑性树脂基复合材料的发展及纤维缠绕成型工艺[J];宇航材料工艺;1993年04期
5 何晓东;史耀耀;赵鹏兵;;复合材料布带缠绕成型压力控制技术[J];航空学报;2014年03期
6 张福承;简论从纤维缠绕到带缠绕成型工艺[J];纤维复合材料;1998年02期
7 张晓明;;非晶金属带缠绕成型及其性能的研究[J];纤维复合材料;1988年03期
8 刘一博,陈可娟,赵志强,张诚生;工程机械轮胎胎面仿型缠绕成型机设计[J];橡胶工业;2004年08期
9 贾丽霞;陈辉;;纤维缠绕成型聚酰亚胺基复合材料性能研究[J];纤维复合材料;2010年03期
10 黎昱;陈维强;林大庆;张玉生;;缠绕成型复合材料壳体及基体改性研究[J];宇航材料工艺;2009年05期
相关会议论文 前4条
1 刘炳禹;王晓洁;韩建平;;流线型壳体缠绕成型技术研究[A];复合材料的现状与发展——第十一届全国复合材料学术会议论文集[C];2000年
2 李鹏;杨秀迪;田会方;徐东亮;高乐敏;吴耀楚;;缠绕成型工艺的高效化和自动化[A];第十三届玻璃钢/复合材料学术年会论文集[C];1999年
3 吴海峰;潘鼎;;环氧基复合材料纤维缠绕成型固化的热化学模型[A];全国首届青年复合材料学术交流会论文集[C];2007年
4 吴海峰;潘鼎;;环氧基复合材料纤维缠绕成型固化的热化学模型[A];中国复合材料学术研讨会论文集[C];2005年
相关博士学位论文 前1条
1 王显峰;异型件面片缠绕成型轨迹规划的研究[D];哈尔滨工业大学;2008年
相关硕士学位论文 前9条
1 周天一;复合材料桨叶增强带缠绕成型技术与装备研究[D];大连理工大学;2015年
2 王少梅;仿形带织物层叠缠绕成型矩形管复合材料的研究[D];天津工业大学;2016年
3 刘长志;纤维缠绕成型中树脂流动/纤维密实行为研究[D];大连理工大学;2016年
4 许晶;缠绕成型碳纤维混杂增强复合材料薄壁筒的碰撞吸能特征[D];东华大学;2017年
5 张勇;非回转体构件缠绕成型运动轨迹研究[D];哈尔滨工业大学;2006年
6 李旭武;连续玻璃纤维增强聚丙烯复合材料的两步法缠绕成型[D];华东理工大学;2011年
7 高维佳;连续纤维增强PEK-C复合材料的缠绕成型工艺及性能研究[D];沈阳航空航天大学;2011年
8 曹建;仿竹结构的新型复合材料管的制备和研究[D];东华大学;2008年
9 李明捷;基于ARM微控制器的FRP缠绕成型工艺数据采集系统的研究[D];武汉理工大学;2006年
,本文编号:1882814
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1882814.html