氧化锌纳米线圈的压电特性的研究
发布时间:2018-05-14 04:24
本文选题:氧化锌纳米线圈 + 压电特性 ; 参考:《大连理工大学》2015年硕士论文
【摘要】:近年来,随着微电子技术的发展,人们对纳米材料的需求越来越多。如今纳米科技的研究已经不仅仅限于对纳米材料的基本物理化学性质的研究,更多的是制备一些独特的纳米结构,利用这些纳米材料表现出的不同于体材料的力学、电学、光学等性质以及独特的纳米结构构建各种纳米电子器件和光电子器件,并将其应用于生物医学、信息技术等领域,给我们的生活带来了极大的便利。氧化锌纳米材料由于其优异的光学、电学、力学性质而受到广泛关注。氧化锌不仅具有半导体和光激发等性质,作为纤锌矿结构的材料它也具有压电性质。由于纳米线具有比薄膜更加优异的力学性能,氧化锌纳米线成为研究压电电子学和压电光电子学最常用的材料结构,被用来制备压电纳米发电机。结合氧化锌本身的压电特性和纳米线圈的螺旋结构,氧化锌纳米线圈可能也具有优异的压电性能。氧化锌纳米结构的制备方法有很多,常用的为液相法、磁控溅射法。然而磁控溅射法一般用来获得氧化锌薄膜,很难实现纳米线圈的制备。本论文将采用模板法制备氧化锌纳米线圈。以化学气相沉积法制备得到的碳纳米线圈为模板,利用磁控溅射法在碳纳米线圈表面形成一层氧化锌晶体结构,然后在高温下烧掉碳结构,则剩下氧化锌纳米线圈。氧化锌纳米线具有比薄膜材料更优异的压电特性,可用于压电电子学和压电光电子学器件,也是制备纳米发电机的优良材料。因此,通常研究纳米氧化锌的压电特性时都是采用纳米线或纳米棒结构。但是由氧化锌纳米线构成的压电纳米发电机只能产生毫伏量级的电压,发电效率也不高。本论文将对氧化锌纳米线圈的压电特性进行研究。利用Comsol Multiphysics软件可对多物理场进行分析的特点模拟了几种氧化锌纳米结构在发生形变时的应变、电势分布情况。通过分析得出,氧化锌螺旋壳结构发生拉伸形变后,其壳内外会产生一个电势差,而螺旋表面的各个部分由于发生的形变不同,在一个螺距内,电势分布并不均匀;而在整个螺旋结构中,电势分布呈现周期性变化。
[Abstract]:In recent years, with the development of microelectronic technology, the demand for nanomaterials is increasing. Nowadays, the research of nanotechnology is not only about the basic physical and chemical properties of nanomaterials, but also about the preparation of some unique nanostructures, which are different from the mechanical and electrical properties of bulk materials. Many kinds of nano-electronic devices and optoelectronic devices are constructed with optical properties and unique nanostructures, and applied in biomedicine, information technology and other fields, which bring great convenience to our life. Zinc oxide nanomaterials have attracted wide attention due to their excellent optical, electrical and mechanical properties. Zinc oxide not only has semiconductor and photoexcitation properties, but also has piezoelectric properties as wurtzite structure material. Because nanowires have better mechanical properties than thin films, ZnO nanowires have become the most commonly used materials in piezoelectric electronics and piezoelectric optoelectronics, and have been used to fabricate piezoelectric nano-generators. Combined with the piezoelectric properties of zinc oxide and the helical structure of the nanocoils, the ZnO nanocoils may also have excellent piezoelectric properties. There are many preparation methods of ZnO nanostructures, such as liquid phase method and magnetron sputtering method. However, the magnetron sputtering method is generally used to obtain ZnO thin films, it is difficult to achieve the preparation of nanocoils. In this thesis, ZnO nanocoils are prepared by template method. Using the carbon nanocoils prepared by chemical vapor deposition as template, a layer of zinc oxide crystal structure was formed on the surface of carbon nanocoils by magnetron sputtering method. Then the carbon structure was burned off at high temperature, and then the ZnO nanocoils were left. Zinc oxide nanowires have more excellent piezoelectric properties than thin film materials and can be used in piezoelectric electronics and piezoelectric optoelectronics devices. Therefore, nanowires or nanorods are usually used to study the piezoelectric properties of ZnO nanoparticles. However, piezoelectric nanometers made of ZnO nanowires can only produce voltages of millivolts and low generation efficiency. In this paper, the piezoelectric properties of zinc oxide nanocoils are studied. The strain and potential distribution of several ZnO nanostructures during deformation were simulated by using Comsol Multiphysics software to analyze the multi-physical fields. Through analysis, it is concluded that after the structure of zinc oxide spiral shell has tensile deformation, there will be a potential difference inside and outside the shell, and the potential distribution of each part of the spiral surface is not uniform in a pitch because of the different deformation. In the whole helical structure, the potential distribution changes periodically.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;TQ132.41
【相似文献】
中国期刊全文数据库 前10条
1 付红志;李焕勇;介万奇;汪晓芹;;硝酸银辅助的氧化锌纳米线的气相法制备[J];人工晶体学报;2006年03期
2 袁艳红;赵华;陈锐;王相虎;林t,
本文编号:1886320
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1886320.html