基于碳纳米复合材料及β-环糊精对手性小分子识别研究
发布时间:2018-05-26 11:53
本文选题:手性识别 + 手性表面 ; 参考:《西南大学》2015年硕士论文
【摘要】:电化学手性传感器是将电化学测试分析技术和手性识别结合起来的一类新型分析方法,具有准确度高、灵敏度高、选择性好、操作便捷、价格低廉、易于微型化和自动化等优点。碳纳米材料作为常见的纳米材料之一,因其具有良好的导电性能和大的比表面积,稳定性优良等特点广泛用于化学修饰电极及电化学领域等。环糊精(cyclodextrins,CDs)是由D-型吡喃葡萄糖通过a-1,4-糖苷键连接而成的圆锥形筒状化合物,外缘亲水,内部疏水结构,从而能与许多分子形成包合物,使其成为常见的手性选择剂。本文结合纳米材料的优良电化学性能和环糊精的手性选择作用,构建电化学手性传感器。主要工作如下:1.构建了碳纳米管-离子液体/β-环糊精修饰电极,采用循环伏安技术、交流阻抗技术和扫描隧道显微镜对修饰电极进行表征,并以此作为手性界面,探讨了拟构建手性界面对多巴的选择性作用。实验结果表明,该手性界面对D-多巴的选择性作用更强。此外还探讨了可能的机理,并和相关电化学识别方法做了对比研究,我们构建的手性传感器具备识别能力强,线性宽,检测限低等优点。2.通过原位还原法制备了石墨烯-纳米铂复合材料,并通过它与L-色氨酸的π-π堆积作用形成了石墨烯-纳米铂-L-色氨酸复合物,一步修饰于玻碳电极用于对多巴的手性识别。实验结果表明该手性传感界面与D-多巴的作用强于L-多巴的作用,此外,也做了最佳条件优化,在最佳优化条件下,能达到较低的检测限和较宽的线性范围。3.通过循环伏安技术在裸玻碳电极上聚合L-天门冬氨酸,并浸泡β-环糊精过夜,构建了β-环糊精-聚-L-天门冬氨酸膜修饰电极(β-CD-P-L-Asp/GCE)手性界面,用于对电活性小分子抗坏血酸的手性识别研究。实验结果表面,该手性界面对D-抗坏血酸的作用更强,从而实现了对抗坏血酸异构体的手性区分。并且在有酪氨酸干扰的条件下,依旧有较大的选择作用。利用环糊精与抗坏血酸的相互作用来构建手性小分子识别,在电化学手性分析中提供了简单的方法和参考。
[Abstract]:Electrochemical chiral sensor is a new kind of analytical method which combines electrochemical testing and analysis technology with chiral recognition. It has high accuracy, high sensitivity, good selectivity, convenient operation and low price. It is easy to miniaturize and automate. Carbon nanomaterials, as one of the common nano-materials, are widely used in chemically modified electrodes and electrochemical fields because of their good conductivity, large specific surface area and good stability. Cyclodextrins (CDS) is a conical cylindrical compound which is connected by a-1O4-glucoside bond with D-glucopyranose. It is hydrophilic and hydrophobic, and can form inclusion complex with many molecules, making it a common chiral selector. In this paper, electrochemical chiral sensors were constructed by combining the excellent electrochemical properties of nanomaterials and the chiral selectivity of cyclodextrin. The main work is as follows: 1. Carbon nanotube ionic liquid / 尾 -cyclodextrin modified electrode was constructed. The modified electrode was characterized by cyclic voltammetry, AC impedance technique and scanning tunneling microscope. The selective effect of chiral interface on dopa was discussed. The experimental results show that the chiral interface has stronger selectivity to D-dopa. In addition, the possible mechanism is discussed and compared with the electrochemical recognition methods. The chiral sensor has the advantages of strong recognition ability, wide linearity, low detection limit and so on. Graphene nano-platinum composites were prepared by in-situ reduction method, and formed graphene nano-platinum-L-tryptophan complex by 蟺-蟺 accumulation of L-tryptophan, which was modified into glassy carbon electrode for chiral recognition of dopa. The experimental results show that the interaction between the chiral sensing interface and Ddopa is stronger than that of L- dopa. In addition, the optimal conditions are optimized. Under the optimal conditions, the detection limit is lower and the linear range is wide. The chiral interface of 尾 -cyclodextrin-poly (L-aspartate) modified electrode (尾 -CD-P-Asp-GCE-GCE) was constructed by cyclic voltammetry (CV) polymerization of L-aspartate on bare glassy carbon electrode and immersion of 尾 -cyclodextrin overnight. It is used to study the chiral recognition of ascorbic acid, a small electroactive molecule. On the surface of the experimental results, the chiral interface has a stronger effect on D-ascorbic acid, thus realizing the chiral differentiation of ascorbic acid isomers. And in the presence of tyrosine interference, there is still a greater role in the selection. Using the interaction of cyclodextrin and ascorbic acid to construct chiral small molecule recognition, this paper provides a simple method and reference for electrochemical chiral analysis.
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB332;O636.12
【参考文献】
中国期刊全文数据库 前1条
1 LI MinMin;QING GuangYan;ZHANG MingXi;SUN TaoLei;;Chiral polymer-based biointerface materials[J];Science China(Chemistry);2014年04期
,本文编号:1937144
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1937144.html