银纳米线柔性透明导电薄膜的制备及性能研究
本文选题:正压过滤 + DLVO理论 ; 参考:《中国科学技术大学》2017年博士论文
【摘要】:随着柔性电子器件的迅猛发展,透明导电电极已经成为光电器件不可或缺的一部分,如柔性显示器、柔性太阳能电池及柔性加热器等。本文主要研究银纳米线基柔性透明导电薄膜的光电性能,其研究内容包括银纳米线的制备工艺、银纳米线的纯化、稳定涂布液的制备以及超低雾度和超高方阻均一性银纳米线柔性透明导电薄膜的制备工艺。取得的主要结果如下:(1)通过调节反应液的传质传热过程,制备了直径30~100nm银纳米线,实现了银纳米线直径的调控;通过调节反应时间、反应温度及卤素离子的比例,制备了直径21 nm、长径比1500的超细银纳米线。(2)依据胶体化学渗透压理论及DLVO理论,提出了一种尺寸筛分方法。首次将正压过滤与丙酮纯化工艺相结合,依次去除银纳米颗粒及纳米棒,使得银纳米线长度方差从10.8 μm降至6.3 μm,直径方差从26.6 nm降至3.2 nm,实现了银纳米材料的尺寸筛分,获得高纯度超细银纳米线。(3)依据胶体表面化学中双电层理论及空间位阻效应,通过调控涂布液粘度剂和分散剂的百分含量从而对银纳米线表面进行化学修饰,实现了涂布液至少稳定3个月而不聚沉。另外,依据RhodesOrchad公式解析银纳米线涂布液的正弦波流模型,通过添加高表面张力的流平剂可提高涂布液的流平性,制备了流变性能优异、稳定的银纳米线涂布液。(4)依据纳米材料的流体力学,通过调节自动涂膜机的车速、涂布的湿膜厚度、涂布液的流平时间,调控银纳米线柔性透明导电薄膜方阻及方阻均一性;特别地,当车速为180 mm/s时,制备了方阻65.3 Ω/□、方阻不均匀度6.0%及雾度1.3%银纳米线柔性透明导电薄膜。(5)依据光学增透原理,通过调节光学改善层的厚度、折射率以及光堆结构等参数,可实现薄膜雾度的调控;特别地,在银纳米线上涂布湿膜厚度5 μm的光学改善层,将银纳米线表面粗糙度6.5 nm降至1.5nm,从而使得薄膜雾度由1.3%降至1.0%、方阻不均匀度降至4.9%,在空气(折射率约为1.0)与PET(折射率约为1.65)界面涂布折射率为1.49的光学改善层,将银纳米线透明导电薄膜的雾度降至0.8%。
[Abstract]:With the rapid development of flexible electronic devices, transparent conductive electrodes have become an indispensable part of optoelectronic devices, such as flexible displays, flexible solar cells and flexible heaters. In this paper, the optoelectronic properties of silver nanowires based on flexible transparent conductive thin films are studied, including the preparation of silver nanowires, the purification of silver nanowires, the preparation of silver nanowires and the purification of silver nanowires. Preparation of stable coating solution and preparation of ultra-low fog and ultra-high square resistance uniform silver nanowires flexible transparent conductive films. The main results obtained are as follows: (1) by adjusting the mass transfer and heat transfer process of the reaction solution, the diameter of 30~100nm silver nanowires is prepared, the diameter of the silver nanowires is regulated, and the reaction time, reaction temperature and the ratio of halogen ions are adjusted. Ultrafine silver nanowires with diameter of 21 nm and ratio of length to diameter of 1500 were prepared. According to the theory of colloid chemical osmotic pressure and DLVO theory, a size screening method was proposed. By combining barotropic filtration with acetone purification process for the first time, silver nanoparticles and nanorods were removed in order to reduce the variance of silver nanowires length from 10.8 渭 m to 6.3 渭 m, and diameter variance from 26.6 nm to 3.2 nm. According to the double layer theory and steric effect of colloid surface chemistry, the silver nanowires were chemically modified by adjusting the content of viscosity agent and dispersant in the coating solution. The coating liquid is stable for at least 3 months without coalescence. In addition, according to the RhodesOrchad formula, the sinusoidal wave flow model of silver nanowire coating solution is analyzed. The fluidity of the coating solution can be improved by adding the flattening agent with high surface tension, and the rheological property is excellent. According to the hydrodynamics of nanomaterials, the stable silver nanowire coating fluid. By adjusting the speed of the automatic film coating machine, the thickness of the wet film, the time of the coating liquid, the square resistance and the uniformity of the square resistance of the flexible transparent conductive film of the silver nanowire are regulated. In particular, at a speed of 180 mm/s, a flexible transparent conductive film with 65.3 惟 /-square resistance, 6.0% square resistance and 1.3% foggy resistance was prepared. According to the optical antireflection principle, the thickness of the layer was improved by adjusting the thickness of the film. The index of refraction and the structure of the optical stack can be adjusted to achieve the control of the film haze. In particular, the optical improvement layer with a wet film thickness of 5 渭 m is coated on the silver nanowires. The surface roughness of silver nanowires was reduced from 1.3% to 1.0 nm, the square resistance uniformity was reduced to 4.9 nm, and the optical improvement layer with refractive index of 1.49 was coated at the interface of air (about 1.0) and PET (1.65). The foggy of the transparent conductive film of silver nanowires was reduced to 0.8.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 ;一种单分散银纳米的制备方法[J];黄金科学技术;2010年01期
2 周吉峰;银纳米团可以储存更多的光学数据[J];稀有金属快报;2001年12期
3 邹凯,张晓宏,吴世康,段晓峰;光化学法合成银纳米线及其形成机理的研究[J];化学学报;2004年18期
4 ;硅酸盐基银纳米孔复合材料顺利通过检测[J];有机硅氟资讯;2005年08期
5 周学东;何鑫;赵修建;赵小锋;;一维银纳米棒的制备及其薄膜化研究[J];材料导报;2006年S2期
6 王悦辉;张琦;周济;;银纳米立方体的制备及其影响因素[J];材料导报;2008年03期
7 冯晋阳;刘保顺;宋明霞;周学东;赵修建;;玻璃中定向银纳米棒的制备及偏光性能研究[J];武汉理工大学学报;2009年04期
8 马占芳;司国丽;初一鸣;陈颖;;三角银纳米柱的研究进展[J];化学进展;2009年09期
9 吴馨洲;裴梅山;王庐岩;李肖男;陶绪堂;;线状和树枝状银纳米结构、形成机理及表面增强拉曼散射性质(英文)[J];物理化学学报;2010年11期
10 李山;钟明亮;张礼杰;熊祖洪;张中月;;偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响[J];物理学报;2011年08期
相关会议论文 前10条
1 邵桂雪;李天保;张华;赵君芙;梁建;许并社;;微波冷凝回流制备银纳米线[A];2011中国材料研讨会论文摘要集[C];2011年
2 李慧s,
本文编号:1940404
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1940404.html