基于二氧化钛纳米管阵列酶电极的制备及其应用研究
发布时间:2018-05-28 06:35
本文选题:二氧化钛纳米管阵列 + 银纳米颗粒 ; 参考:《东南大学》2015年博士论文
【摘要】:电化学酶生物传感器是一种将电化学分析方法与酶生物技术相结合的生物传感器,已在临床检测、环境监测以及食品、制药等领域表现出广阔的应用前景。目前,在酶生物传感器的制备和应用过程中,所面临的最大问题就是酶电极的生物电催化活性较低,且稳定性较差,容易失活。然而,此类问题与酶电极制备过程中所采用的酶固定化方法、以及酶固定化所选用载体材料密切相关。此外,酶电极的生物电催化活性不仅与载体材料的亲水性密切相关,而且与载体材料的导电性也密切相关。基于此,本论文从新型二氧化钛(Ti02)纳米载体材料用于酶电极的构建以及酶的高效固定化方法等方面进行了探索性的研究。本论文研究工作主要是基于TiO2 NTAs酶电极的制备及其应用研究。设计合成了4种不同TiO2 NTAs基载体材料:二氧化钛纳米管阵列(TiO2 NTAs),二氧化钛纳米管阵列/银纳米颗粒(TiO2 NTAs/AgNPs),二氧化钛纳米管阵列/还原氧化石墨烯/银纳米颗粒(TiO2 NTAs/r-GO/AgNPs),氮掺杂二氧化钛纳米管阵列(N-TiO2 NTAs)。基于以上所制备的TiO2 NTAs基载体材料构建了一系列具有较高生物电催化活性的TiO2 NTAs基酶电极,并研究了所制备酶电极在生物电催化领域中的应用。本论文研究的具体工作包括以下几个方面:1、TiO2 NTAs/GOx酶电极的制备及其生物电催化性能研究。TiO2 NTAs具有良好的生物相容性和良好的亲水性,并且具有较大的比表面积和较强的吸附能力:此外,高度有序的TiO2纳米阵列可以为电子传输提供单向通道,有利于电子传导。因而,TiO2 NTAs是一种理想的酶电极载体材料。探索研究了以TiO2 NTAs为载体材料,在其表面进行葡萄糖氧化酶(GOx)的固定化,以制备TiO2 NTAs/GOx酶电极。提出了一种可直接将GOx固定化于TiO2 NTAs表面以制备酶电极的新的酶固定化方法,即改进交联法。与传统的交联法相比,该种改进交联法可以直接将酶固定化于载体材料的表面,避免酶的活性中心在固定化过程中被包埋,因此可以有效提升酶电极的生物电催化活性。研究表明,基于TiO2 NTAs/GOx酶电极的生物传感器对葡萄糖浓度响应的线性范围为0.05-0.65mM,其检测灵敏度为199.61 μmM-1 cm-2。因此,TiO2 NTAs/GOx酶电极具有良好的生物电催化活性,可以作为葡萄糖生物传感器用于葡萄糖的检测。2、TiO2 NTAs/AgNPs/GOx酶电极的制备及其生物电催化性能研究。银不仅是导电性最好的贵金属材料,而且具有良好的生物相容性,基于AgNPs修饰酶生物传感器具有较强的检测灵敏度。探索研究了以TiO2 NTAs/AgNPs为载体材料的酶电极,通过提高载体材料电子传递能力来提升酶电极生物电催化活性。本研究采用了化学沉积法将AgNPs沉积于TiO2 NTAs表面,得到了TiO2 NTAs/AgNPs,单个银颗粒的尺寸大小在30到100 nm范围之间。然后,采用改进交联法将GOx固定化于TiO2 NTAs/AgNPs载体材料表面制备得到了TiO2 NTAs/AgNPs/GOx酶电极,并研究的该酶电极在生物电催化领域中的应用。研究表明,基于TiO2 NTAs/AgNPs/GOx酶电极的生物传感器对葡萄糖浓度响应的线性范围为0.05-0.65 mM,其检测灵敏度为207.43 μA mM-1。与TiO2 NTAs/GOx酶电极的检测灵敏度(199.61 μAmM-1cm-2)相比较为接近或者有轻微的提升,但重要的是TiO2 NTAs/AgNPs电极电子传递能力的提升,使得其在酶生物燃料电池领域中的应用成为了可能。基于TiO2 NTAs/AgNPs/GOx酶电极的生物燃料电池的开路电压为0.202 V,短路电流为0.197 mA cm-2最大输出功率密度为8.66μW cm-2。因此,TiO2 NTAs/AgNPs/GOx酶电极的生物电催化活性高于TiO2 NTAs/GOx酶电极,能够一定程度上提高葡萄糖生物传感器的检测灵敏度性能,并且可以应用于构建酶生物燃料电池。3、TiO2 NTAs/r-GO/AgNPs/GOx酶电极的制备及其生物电催化性能研究。石墨烯与纳米颗粒之间能够形成的较强的范德华力,可以有效防止其表面所沉积的纳米颗粒的团聚,在石墨烯的表面进行纳米颗粒的沉积可以得到较小尺寸的纳米颗粒。此外,r-GO表面富含亲水性基团,这些亲水性基团有助于酶电极构建过程中提升酶的固定化效率。为了解决TiO2 NTAs/AgNPs载体材料中AgNPs的团聚现象、粒径大小不一和分布不太均匀等问题,探索研究了以TiO2 NTAs/r-GO/AgNPs为载体材料的酶电极,通过提高表面修饰AgNPs 5分散性能来提升酶电极生物电催化活性。采用化学沉积法将AgNPs沉积于r-GO修饰的TiO2 NTAs表面,得到了TiO2 NTAs/r-GO/AgNPs。然后,采用改进交联法将GOx固定化于TiO2 NTAs/r-GO/AgNPs载体材料表面制备得到了TiO2 NTAs/r-GO/AgNPs/GOx酶电极,并研究了该酶电极在生物电催化领域中的应用。研究表明,与TiO2 NTAs/AgNPs相比, TiO2 NTAs/r-GO/AgNPs表面AgNPs的覆盖密度更大,AgNPs颗粒尺寸又小又均匀,单个银颗粒的尺寸大小在20到30 nm范围之间。基于TiO2NTAs/r-GO/AgNPs/GOx酶电极的生物传感器对葡萄糖浓度响应的线性范围为0.05-0.3mM,其检测灵敏度为257.79 μAmM-1,比较TiO2 NTAs/AgNPs/GOx酶电极的检测灵敏度(207.43 μA mM-1 cm-2)有明显的提升;基于TiO2 NTAs/r-GO/AgNPs/GOx酶电极的生物燃料电池的开路电压为0.225 V,短路电流为0.232 mA cm-2,最大输出功率密度为13.45 μW cm-2,比较基于TiO2 NTAs/AgNPs/GOx酶电极的生物燃料电池(8.66 μW cm-2)有一定程度的提升。因此,TiO2 NTAs/r-GO/AgNPs/GOx酶电极的生物电催化活性优于TiO2 NTAs/AgNPs/GOx酶电极,可以进一步提高葡萄糖生物传感器的检测灵敏度和酶生物燃料电池的最大输出功率密度。4、N-TiO2 NTAs/GOx酶电极的制备及其生物电催化性能研究。氮元素掺杂改性Ti02不仅具有较好的亲水性,而且与Ti02相比具有较高的导电性。为了既能提升TiO2 NTAs载体材料的电子传递能力,又能保持其亲水性,采用氮元素掺杂改性TiO2 NTAs制备得到了N-TiO2 NTAs。TiO2和N-TiO2材料的接触角分别为39°和44°,因此,它们具有相近而优良的亲水性;N-TiO2 NTAs电荷转移电阻(Rct)为500.2 ohm,明显低于TiO2 NTAs的Rct (6431 ohm),因此,N-TiO2 NTAs与TiO2 NTAs相比具有更好的电子传递能力。采用改进交联法将GOx固定化于N-TiO2 NTAs载体材料表面制备了N-TiO2 NTAs/GOx酶电极,并研究了该酶电极在生物电催化领域中的应用。研究表明,基于N-TiO2 NTAs/GOx酶电极的生物传感器对葡萄糖浓度响应的线性范围为0.05-0.85 mM,其检测灵敏度为733.17 μA mM-1 cm-2,比较TiO2 NTAs/GOx酶电极的检测灵敏度(199.61μA mM-1 cm2)有非常显著的提升。此外,基于N-TiO2 NTAs/GOx酶电极的生物燃料电池的最大输出功率密度为23.92 μW cm-2,比较基于TiO2 NTAs/GOx酶电极(5.38 μW cm-2)和TiO2 NTAs/r-GO/AgNPs/GOx酶电极(13.45 μW cm-2)的生物燃料电池都有明显的提升。因此,N-TiO2 NTAs/GOx酶电极的生物电催化活性明显优于TiO2 NTAs/GOx和Ti02NTAs/r-GO/AgNPs/GOx酶电极,可以显著提高葡萄糖生物传感器的检测灵敏度和酶生物燃料电池的最大输出功率密度。
[Abstract]:Electrochemical enzyme biosensor is a kind of biosensor which combines electrochemical analysis method with enzyme biological technology. It has been widely used in clinical detection, environmental monitoring, food, pharmaceutical and other fields. At present, the biggest problem in the preparation and application of enzyme biosensor is the production of enzyme electrode. In addition, the bioelectrocatalytic activity of the enzyme electrode is not only closely related to the hydrophilicity of the carrier material, but also is closely related to the hydrophilic property of the carrier material, and the conductivity of the enzyme electrode. Based on this, this thesis has studied the construction of the new titanium dioxide (Ti02) nanoscale material for the construction of the enzyme electrode and the efficient immobilization of the enzyme. The main work of this thesis is based on the preparation and application of the TiO2 NTAs enzyme electrode. 4 different TiO2 NTAs bases are designed and synthesized. Carrier materials: titanium dioxide nanotube array (TiO2 NTAs), titanium dioxide nanotube array / silver nanoparticles (TiO2 NTAs/AgNPs), titanium dioxide nanotube array / reduced graphite oxide / silver nanoparticles (TiO2 NTAs/r-GO/AgNPs), nitrogen doped titanium dioxide nanotube array (N-TiO2 NTAs). Based on the TiO2 NTAs base material prepared above A series of TiO2 NTAs based enzyme electrodes with high bioelectrocatalytic activity were constructed and the application of the enzyme electrode in the field of bioelectrocatalysis was studied. The specific work of this study included the following aspects: 1, the preparation of the TiO2 NTAs/GOx enzyme electrode and the study on the bioelectrocatalytic performance of.TiO2 NTAs. In addition, highly ordered TiO2 nanowire arrays can provide unidirectional channels for electronic transmission and facilitate electron conduction. Therefore, TiO2 NTAs is an ideal material for the carrier of enzyme electrode. TiO2 NTAs as the carrier material is explored and studied. The immobilized glucose oxidase (GOx) is immobilized on the surface to prepare the TiO2 NTAs/GOx enzyme electrode. A new enzyme immobilization method, which can directly immobilize GOx on the surface of TiO2 NTAs to prepare the enzyme electrode, is proposed, which is improved crosslinking method. Compared with the traditional crosslinking method, the improved crosslinking method can directly immobilize the enzyme in the table of carrier material. In order to avoid the enzyme activity center in the immobilized process, it can effectively enhance the bioelectrocatalytic activity of the enzyme electrode. The study shows that the linear range of the response of biosensor based on TiO2 NTAs/GOx enzyme electrode is 0.05-0.65mM, and its sensitivity is 199.61 mM-1 cm-2., therefore, TiO2 NTAs/GOx enzyme electrode It has good bioelectrocatalytic activity and can be used as a glucose biosensor for the determination of.2, TiO2 NTAs/AgNPs/GOx enzyme electrode and its bioelectrocatalytic performance. Silver is not only the best metal material with the best conductivity, but also has good biocompatibility, and the biosensor based on AgNPs modifier has a better effect. The enzyme electrode with TiO2 NTAs/AgNPs as the carrier material is explored and studied. The bioelectrocatalytic activity of the enzyme electrode is enhanced by increasing the electron transfer ability of the carrier material. The chemical deposition method is used to deposit AgNPs on the surface of TiO2 NTAs, and the TiO2 NTAs/ AgNPs is obtained. The size of the single silver particles is from 30 to 100 n. M ranges between them. Then, the modified crosslinking method is used to obtain the TiO2 NTAs/AgNPs/GOx enzyme electrode on the surface of GOx immobilized on the TiO2 NTAs/AgNPs carrier material, and the application of the enzyme electrode in the field of bioelectrocatalysis is studied. The study shows that the linear model of the response of the biosensor based on the TiO2 NTAs/AgNPs/GOx enzyme electrode to the glucose concentration response is shown. The detection sensitivity is 0.05-0.65 mM, and its detection sensitivity is 207.43 mu A mM-1. and the detection sensitivity of TiO2 NTAs/GOx electrode (199.61 mu AmM-1cm-2) is close or slightly elevated, but it is important to improve the electron transfer ability of TiO2 NTAs/AgNPs electrode, so that its application in the field of enzyme biofuel battery has become possible. The open circuit voltage of the biofuel battery of the TiO2 NTAs/AgNPs/GOx enzyme electrode is 0.202 V, the short circuit current is 0.197 mA cm-2 and the maximum output power density is 8.66 u W cm-2., so the bioelectrocatalytic activity of the TiO2 NTAs/AgNPs/GOx enzyme electrode is higher than the TiO2 NTAs/GOx enzyme electrode, and the detection sensitivity of the glucose biosensor can be improved to a certain extent. Degree performance and can be applied to the preparation of.3, TiO2 NTAs/r-GO/AgNPs/GOx enzyme electrode and its bioelectrocatalytic performance. The strong Fan Dehua force formed between graphene and nanoparticles can effectively prevent the agglomeration of nanoparticles deposited on the surface of the graphene, and make nano particles on the surface of graphene. In addition, the r-GO surface is rich in hydrophilic groups. These hydrophilic groups are helpful to the immobilization efficiency of the enzyme during the construction of the enzyme electrode. In order to solve the problem of the aggregation of AgNPs in the carrier material of the TiO2 NTAs/AgNPs carrier, the size of the particle size is small and the distribution is not too uniform and the distribution is not too uniform. The enzyme electrode with TiO2 NTAs/r-GO/AgNPs as the carrier material was investigated by increasing the dispersion properties of the surface modified AgNPs 5 to improve the bioelectrocatalytic activity of the enzyme electrode. AgNPs was deposited on the r-GO modified TiO2 NTAs surface by chemical deposition, and TiO2 NTAs/r-GO/AgNPs. was obtained, and the GOx was immobilized to TiO2 NTAs/r-GO/A by the improved cross linking method. The TiO2 NTAs/r-GO/AgNPs/GOx enzyme electrode was prepared on the surface of the gNPs carrier material, and the application of the enzyme electrode in the field of bioelectrocatalysis was studied. Compared with TiO2 NTAs/AgNPs, the density of AgNPs on the surface of TiO2 NTAs/r-GO/AgNPs was larger, the size of AgNPs particles was small and uniform, and the size of single silver particles was 20 to 30 n. Between the M range, the linear range of the biosensor based on the TiO2NTAs/r-GO/AgNPs/GOx enzyme electrode response to glucose concentration is 0.05-0.3mM, and its detection sensitivity is 257.79 mu AmM-1, and the detection sensitivity of the TiO2 NTAs/AgNPs/GOx electrode (207.43 mu A mM-1 cm-2) has obvious lifting; based on the TiO2 NTAs/r-GO/AgNPs/GOx enzyme electrode. The open circuit voltage of the fuel cell is 0.225 V, the short-circuit current is 0.232 mA cm-2, the maximum output power density is 13.45 W cm-2, and the biofuel battery based on the TiO2 NTAs/AgNPs/GOx enzyme electrode has a certain degree of improvement. Therefore, the bioelectrocatalytic activity of the TiO2 NTAs/r-GO/AgNPs/GOx enzyme electrode is better than that of the TiO2. The GOx enzyme electrode can further improve the sensitivity of the glucose biosensor and the maximum output power density of the enzyme biofuel battery.4, the preparation of the N-TiO2 NTAs/GOx enzyme electrode and its bioelectrocatalytic performance. The nitrogen doped modified Ti02 not only has better hydrophilicity, but also has higher conductivity compared with Ti02. In order to improve the electronic transfer ability of TiO2 NTAs carrier material and keep its hydrophilic property, the contact angles of N-TiO2 NTAs.TiO2 and N-TiO2 materials are 39 and 44 degrees respectively by nitrogen doped modified TiO2 NTAs. Therefore, they have similar and excellent hydrophilicity, and N-TiO2 NTAs charge transfer resistance (Rct) is 500.2 ohm, It is obviously lower than Rct (6431 Ohm) of TiO2 NTAs. Therefore, N-TiO2 NTAs has better electron transfer ability than TiO2 NTAs. The N-TiO2 electrodes are prepared by the modified crosslinking method on the surface of N-TiO2 NTAs carrier material, and the application of the enzyme electrode in the field of bioelectrocatalysis is studied. The linear range of the biosensor on the TAs/GOx enzyme electrode is 0.05-0.85 mM in response to glucose concentration, and its detection sensitivity is 733.17 A mM-1 cm-2, and the detection sensitivity of the TiO2 NTAs/GOx enzyme electrode (199.61 mu A mM-1 cm2) has a very significant improvement. The rate density is 23.92 W cm-2, compared with the TiO2 NTAs/GOx enzyme electrode (5.38 W cm-2) and the TiO2 NTAs/r-GO/AgNPs/GOx enzyme electrode (13.45 mu W cm-2), the biofuel battery has obviously improved. Therefore, the bioelectrocatalytic activity of the N-TiO2 NTAs/GOx enzyme electrode is obviously superior to that of the enzyme electrode and the enzyme electrode. The detection sensitivity of glucose biosensor and the maximum output power density of enzyme biofuel cell were increased.
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O657.1;TB383.1
,
本文编号:1945685
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1945685.html