轿车用纤维织物树脂复合材料悬架弹簧的正向设计及其性能研究
发布时间:2018-05-30 18:10
本文选题:复合材料悬架弹簧 + 纤维织物 ; 参考:《吉林大学》2017年硕士论文
【摘要】:复合材料悬架弹簧与传统金属弹簧相比具有重量轻、耐腐蚀、疲劳性能好等优点,在当前汽车轻量化发展趋势下,具有很大的应用前景。本文通过有限元分析结合实验的方法对复合材料悬架弹簧进行了研究,主要内容和结论如下:(1)分析了复合材料的弹性力学,给出了单向复合材料、正交织物复合材料的弹性常数计算公式以及复合材料悬架弹簧刚度的计算公式;建立了以纤维织物和含聚氨酯芯为增强体的复合材料悬架弹簧的几何模型和有限元模型。(2)采用有限元方法分析了复合材料悬架弹簧簧丝截面上、铺层间、以及铺层内的应力分布规律,对弹簧潜在失效位置进行了判断;提出了复合材料悬架弹簧刚度和强度的有限元分析方法。(3)模拟分析了不同纤维体积分数、不同聚氨酯芯直径、不同铺层角度、不同纤维种类以及混层的复合材料悬架弹簧,结果表明:1、随着纤维体积分数的增加,复合材料悬架弹簧刚度近似呈线性增加,同时,弹簧刚度重量比(p/m)也增加,复合材料利用率提高。2、保持线径为9.3mm的前提下,有无聚氨酯芯的复合材料悬架弹簧刚度相同,但有聚氨酯芯复合材料悬架弹簧有更高的强度;当聚氨酯芯直径在1mm-3mm范围内变化时,复合材料悬架弹簧刚度、强度变化不明显,当聚氨酯芯直径增加至5mm时,弹簧刚度、强度下降明显;聚氨酯芯为4mm的复合材料悬架弹簧刚度重量比(p/m)最大,材料利用率最高。3、随着铺层角度从0°增加到45°,复合材料悬架弹簧刚度、强度均增大。4、在铺层角为45°时,T300碳纤维复合材料悬架弹簧刚度远大于玄武岩纤维和S2玻璃纤维复合材料悬架弹簧,但其容易发生压缩失稳;当铺层角度小于32°时,T300碳纤维复合材料悬架弹簧压缩失稳现象消失;与T300碳纤维和S2玻璃纤维复合材料悬架弹簧相比,玄武岩纤维复合材料悬架弹簧具有更好的综合性能。5、T300碳纤维、玄武岩纤维混层复合材料悬架弹簧结合了纯T300碳纤维和纯玄武岩纤维复合材料悬架弹簧的优点,是理想的复合材料悬架弹簧形式。(4)实验得到以连续玄武岩纤维布和聚氨酯芯为增强体的复合材料悬架弹簧,其压缩性能测试结果表明:1、复合材料悬架弹簧压缩载荷与位移近似成线性相关;模拟计算弹簧刚度值与实验计算值相比误差在10%以内,且实验值稍大于模拟值。2、纤维体积分数为40%的复合材料悬架弹簧刚度大于纤维体积分数为30%的复合材料悬架弹簧;铺层角为45°的复合材料悬架弹簧刚度远大于铺层角为0°的复合材料悬架弹簧;3、复合材料悬架弹簧试样从自由状态压缩至压并状态,未出现破坏失效,与模拟分析结果相一致。4、复合材料悬架弹簧成形后,第1次和第2次压缩后,弹簧自由高度和弹簧刚度都有不同程度的下降,但随着压缩次数的增加,弹簧自由高度和刚度趋于稳定。
[Abstract]:Compared with traditional metal springs, composite suspension springs have the advantages of light weight, corrosion resistance and good fatigue performance. In this paper, the composite suspension spring is studied by means of finite element analysis and experiment. The main contents and conclusions are as follows: (1) the elastic mechanics of composite material is analyzed, and the unidirectional composite material is given. The formula of elastic constant of orthogonal fabric composite material and the formula of spring stiffness of composite material suspension; The geometric model and finite element model of composite suspension spring with fiber fabric and polyurethane core as reinforcements are established. The potential failure position of the spring is judged by the stress distribution in the layer, and the finite element analysis method of stiffness and strength of composite suspension spring is put forward. The different fiber volume fraction and the diameter of polyurethane core are simulated and analyzed. The results show that the stiffness of composite suspension spring increases linearly with the increase of fiber volume fraction, and the stiffness / weight ratio of spring to mass is also increased with the increase of fiber volume fraction. The stiffness of composite suspension spring with or without polyurethane core is the same, but the strength of composite suspension spring with polyurethane core is higher than that with polyurethane core composite suspension spring. When the diameter of polyurethane core changes in the range of 1mm-3mm, the stiffness and strength of composite suspension spring do not change obviously. When the diameter of polyurethane core increases to 5mm, the spring stiffness and strength decrease obviously. The composite suspension spring with polyurethane core (4mm) has the largest stiffness / weight ratio (p / m) and the highest material utilization ratio of .3.The stiffness of composite suspension spring increases from 0 掳to 45 掳with the increase of the laying angle. The stiffness of the suspension spring of T300 carbon fiber composite is much larger than that of the suspension spring of basalt fiber and S2 glass fiber composite material, but the compression instability is easy to occur when the laying angle is 45 掳. When the pawn layer angle is less than 32 掳, the compressive instability of T300 carbon fiber composite suspension spring disappears, compared with that of T300 carbon fiber and S2 glass fiber composite suspension spring, The suspension spring of basalt fiber composite material has better comprehensive performance. The composite suspension spring of basalt fiber composite layer combines the advantages of pure T300 carbon fiber and pure basalt fiber composite suspension spring. It is an ideal composite suspension spring form. 4) the composite suspension spring with continuous basalt fiber cloth and polyurethane core as reinforcement was obtained by experiments. The compression performance test results show that the compression load of composite suspension spring is approximately linear related to displacement, and the error between the simulated spring stiffness value and the experimental value is less than 10%. The experimental value is slightly larger than the simulated value. 2. The stiffness of composite suspension spring with 40% fiber volume fraction is larger than that of composite suspension spring with fiber volume fraction of 30%. The stiffness of composite suspension spring with 45 掳laminated angle is much greater than that with 0 掳laminated composite suspension spring, and the composite suspension spring specimen is compressed from free state to compression state without failure. In accordance with the results of the simulation analysis, the free height and stiffness of the spring decreased in varying degrees after the first and second compression of the composite suspension spring, but with the increase of the compression times, the free height of the spring and the stiffness of the spring decreased in varying degrees after the forming of the composite suspension spring. Spring free height and stiffness tend to stabilize.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U463.334;TB332
【相似文献】
相关期刊论文 前10条
1 皮亚南,刘燕霞,李和平;弹簧的应用与设计计算[J];锻压机械;1999年02期
2 黄炳醒,祁更新;低温弹簧材料及其敏感元件的研究[J];稀有金属;1988年04期
3 穆良骏;刘存德;;螺旋型复合弹簧的研制[J];重型机械;1988年09期
4 彭希仁;钛合金弹簧[J];航空工艺技术;1989年02期
5 ;重介质摇动槽机械性能研究(续)[J];有色金属(冶炼部分);1973年04期
6 张林桂;;关于振动供料器的研究(之四)——中间弹簧的减振效果[J];陕西科技大学学报;1985年01期
7 ;重介质d动槽机械性能研究(续)[J];有色金属;1973年04期
8 刘瑞堂;中口径自动舰炮输弹簧失效原因分析[J];哈尔滨船舶工程学院学报;1987年03期
9 高荣元;圆柱螺旋压缩弹簧的设计与计算[J];冶金设备;1984年05期
10 李家梅;湿式盘式弹簧制动器及其应用[J];矿冶;1995年02期
相关会议论文 前6条
1 丁涛;陈光雄;朱e,
本文编号:1956280
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1956280.html