离子束辅助沉积Ti-Cu-N纳米复合膜
发布时间:2018-06-02 11:25
本文选题:离子束辅助沉积 + 纳米复合膜 ; 参考:《沈阳理工大学》2015年硕士论文
【摘要】:本文采用离子束辅助沉积技术在不锈钢和高速钢基体上制备Ti-Cu-N纳米复合薄膜。用X射线光电子谱(XPS)、X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和纳米压痕仪等方法对制备的试样进行分析,研究基体基体脉冲偏压和离子束离子源放电电流对薄膜的化学成分、结构、形貌、硬度以及弹性模量的影响。分析了不同工艺参数对薄膜结构及性能的影响。研究了离子束的轰击作用对薄膜的成分、形貌以及硬度的影响。结果表明,在304不锈钢基体上,不改变离子束能量的条件下,随着基体脉冲偏压的增加Cu含量先减少然后增加,在1.47at.%-2.75at.%之间变化,当基体偏压为-600V时最小值为1.47at.%,同时择优取向也由Ti N(111)转变为Ti N(220),所有偏压下的Ti N都是面心立方结构(B1-Na Cl)。薄膜的Cu2p峰均对应纯金属Cu,晶粒的平均尺寸在11nm-16nm之间变化。硬度随着基体偏压的增加而减小,当偏压为-100V时,薄膜硬度达到最大值:27.2GPa。在M2高速钢基体上沉积Ti-Cu-N纳米复合薄膜,在离子束的轰击作用下,随着基体偏压在-100V到-900V之间的改变,薄膜中Cu含量在1.05at.%-2.50at.%之间变化。同时,薄膜的结构也受到影响,在-100V出现Ti N(111)择优取向,当基体偏压增加到-300V时,择优取向改变为Ti N(220)。薄膜的Cu2p峰均对应纯金属Cu,晶粒的平均尺寸在11nm-17nm之间变化。硬度和弹性模量随着基体偏压的增加而增大,当偏压为-900V时,薄膜硬度和弹性模量达到最大值,分别为:29.92GPa、476GPa。在304不锈钢基体上,基体偏压为-600V时,改变离子源放电电流时薄膜中Cu含量在1.19at.%-1.80at.%之间发生变化。同时,离子源放电电流在10A、20A、30A、40A时,只存在Ti N(220)择优取向。薄膜的Cu2p峰均对应纯金属Cu。随着离子源放电电流的增加,硬度和弹性模量也发生改变,离子源放电电流为10A时,Cu含量为1.50at.%,薄膜硬度和弹性模量达到最大值:39.73GPa,535.85GPa。在基体M2高速钢上基体上,基体脉冲偏压为-600V时,随着离子源放电电流的变化,Ti-Cu-N纳米复合薄膜中Cu含量在1.138-1.55at.%之间变化。离子源放电电流从10A增加到40A时,只存在Ti N(220)择优取向。随着离子源放电电流增加,薄膜的表面形貌也发生改变,大颗粒数量明显减少。薄膜的硬度和弹性模量随着离子源放电电流的增加先增加后减少,并在离子源放电电流为30A时达到最大值39.24GPa和544.59GPa,此时Cu含量1.157 at.%。
[Abstract]:In this paper, Ti-Cu-N nanocomposite films were prepared on stainless steel and high speed steel substrates by ion beam assisted deposition. The prepared samples were analyzed by means of X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation (TEM). The chemical composition of the films was studied by the substrate pulse bias voltage and ion source discharge current of ion beam. Effects of structure, morphology, hardness and elastic modulus. The effects of different process parameters on the structure and properties of the films were analyzed. The effects of ion beam bombardment on the composition, morphology and hardness of the films were studied. The results show that the Cu content decreases first and then increases with the increase of the pulse bias voltage on 304 stainless steel substrate, and changes between 1.47at.-2.75at.%. When the substrate bias voltage is -600V, the minimum value is 1.47at.and the preferred orientation is also changed from Tini (111) to 220U. The tin with all bias voltages is B1-Na Cln with a face-centered cubic structure. The Cu2p peaks of the films all correspond to pure metal Cu and the average grain size varies from 11nm-16nm to 11nm-16nm. The hardness decreases with the increase of the substrate bias voltage. When the bias voltage is -100V, the hardness of the film reaches the maximum value of: 27.2GPa. Ti-Cu-N nanocomposite films were deposited on M2 high speed steel substrates. Under the bombardment of ion beam, the Cu content in the films varied from -100V to -900V with the change of substrate bias voltage between -100V and -900V, and the Cu content in the films varied from 1.05 at.-2.50at.%. At the same time, the structure of the thin films was also affected. The preferred orientation of the thin films appeared at -100V, and when the substrate bias increased to -300V, the preferred orientation changed to 220U. The Cu2p peaks of the films all correspond to pure metal Cu and the average grain size varies from 11nm-17nm to 11nm-17nm. The hardness and elastic modulus of the film increase with the increase of the substrate bias voltage. When the bias voltage is -900V, the hardness and elastic modulus of the film reach the maximum value, which is: 1. 29. 92 GPA 476 GPA, respectively. When the substrate bias voltage is -600V, the Cu content of the film changes between 1.19at.-1.80at.% when the discharge current of ion source is changed. At the same time, when the discharge current of the ion source is 10 A ~ (20) A ~ (2 +) ~ (30) A ~ (40 A), there is only a preferential orientation of Ti ~ (2 +) _ (220). The Cu2p peaks of the films all correspond to pure metal Cu. With the increase of discharge current of ion source, hardness and elastic modulus also change. When the discharge current of ion source is 10A, the content of Cu is 1.50at.The hardness and elastic modulus of the film reach the maximum value of 39.73GPa55.85GPa. The Cu content in Ti-Cu-N nanocomposite films varied from 1.138-1.55at.When the substrate pulse bias was -600V on the substrate of M2 high speed steel, the Cu content in Ti-Cu-N nanocomposite films varied with the change of ion source discharge current. When the discharge current of ion source is increased from 10A to 40A, there is only a preferred orientation of Ti _ N _ 2O _ 220A. With the increase of the discharge current of ion source, the surface morphology of the film also changed, and the number of large particles decreased obviously. The hardness and elastic modulus of the films increased first and then decreased with the increase of the discharge current of ion source, and reached the maximum 39.24GPa and 544.59 GPA when the discharge current of the ion source was 30 A. the Cu content was 1.157 at.
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【参考文献】
相关期刊论文 前7条
1 张宇峰,张溪文,任兆杏,韩高荣;离子束辅助薄膜沉积[J];材料导报;2003年11期
2 王福贞;离子镀技术的发展[J];国外金属热处理;1997年02期
3 王利;程鑫彬;王占山;唐骐;范滨;;离子束辅助沉积薄膜工艺[J];红外与激光工程;2007年06期
4 黄美东,孙超,林国强,董闯,闻立时;脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能[J];金属学报;2003年05期
5 李铸国;俞海良;吴毅雄;三宅正司;;低能量离子束辐照磁控溅射沉积超硬质nc-TiN/nc-Cu纳米复合膜[J];金属学报;2006年09期
6 陈宝清;朱英臣;王斐杰;王玉魁;;磁控溅射离子镀技术和铝镀膜的组织形貌、相组成及新相形成物理冶金过程的研究[J];热加工工艺;1984年05期
7 黎明,温诗铸;纳米压痕技术及其应用[J];中国机械工程;2002年16期
,本文编号:1968586
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1968586.html