带加热功能的织物增强复合材料试制与性能研究
本文选题:加热丝 + 融雪化冰 ; 参考:《天津工业大学》2017年硕士论文
【摘要】:复合材料在建筑、航空领域有着广泛应用,但是结冰、积雪会严重影响其安全应用,因此快速有效、无损伤的清除这些冰雪,是一项十分重大的工作。本文综述了当前常用的融雪化冰方式,在热融雪法的基础上,设计、试制了一种新型的带加热功能的织物增强复合材料,若用作建筑物屋顶和飞机机身、机翼的表层或表面材料,将预防暴雪、冰冻天气对建筑物、航空等的影响。课题选择12K、6K、3K碳纤维和康铜丝四种材料为加热元件,设计、织造出五种加热丝沿纬向分布的玻纤织物,并与不饱和聚酯树脂复合,制成了共20块复合板。然后对复合板进行通电,测试并分析了复合板内温度场的分布以及影响复合板内温度变化的因素,包括加热丝的种类、功率值、加热时间、加热丝分布比例等因素。并对12K碳纤维和康铜丝作为加热丝,与玻纤纬纱以1:3比例分布的复合材料板的拉伸力学性能作了测试分析,得出以下结论:(1)复合板内温度分布取决于加热丝的位置,温度从加热丝处向空白处传递,复合板内温度值相对中轴线沿纬向呈对称分布,沿经向呈高低起伏的锯齿状分布,相对中心位置对角线方向呈梯度分布。(2)在相同功率条件下,不同加热丝的复合板温度差值不大;通电功率与复合板温度值呈正线性相关关系,同等条件下,功率越大,复合板温度越大;随着通电时间的增加,复合板短时间内温度呈急剧增长,后逐渐增长缓慢,虽然呈上升趋势,但基本趋于稳定;相同功率下,不同分布比例的复合板可升高的温度值比较接近,复合板内加热丝分布越密集,复合板内温度分布越均匀。(3)带加热功能的复合材料与不带加热丝的纯玻纤复合材料相比,拉伸强度变化不大,拉伸弹性模量明显减小,随着通电时间的增加,带加热功能的复合材料拉伸强度减小,且加热元件为康铜丝的比加热元件为碳纤维的拉伸强度降低的更快,但是通电时间对复合板的弹性模量几乎没有影响。综合考虑带加热功能的织物增强复合材料的热学、力学性能,可选择12K碳纤维作为加热丝,加热丝纬密为8根/10cm,将其单独作为纬纱与玻纤纬纱间隔织入织物,制成带加热功能的织物增强复合材料,用于建筑、航空等领域的融雪化冰材料。
[Abstract]:Composite materials are widely used in the field of building and aviation, but icing and snow cover will seriously affect their safety application. Therefore, it is a very important task to remove these ice and snow quickly and effectively without damage. In this paper, a new type of fabric reinforced composite material with heating function is designed and manufactured, which can be used as roof of building and fuselage of aircraft. The surface or surface material of the wing will prevent the effects of blizzard, freezing weather on buildings, aviation, etc. In this paper, four kinds of materials (12K ~ 6K ~ 3K carbon fiber and copper wire) were selected as heating elements to design and weave five kinds of glass fiber fabrics distributed along the weft direction of heating silk, and to make 20 laminated sheets with unsaturated polyester resin. Then, the distribution of temperature field in the composite plate and the factors influencing the temperature change in the composite plate are tested and analyzed, including the type of heating wire, power value, heating time, distribution ratio of heating wire, and so on. The tensile mechanical properties of composite plate with 12K carbon fiber and copper wire as heating wire and glass fiber weft distributed in proportion of 1:3 are tested and analyzed. The following conclusion is drawn: 1) the temperature distribution in the composite plate depends on the position of the heating wire. The temperature is transferred from the heating wire to the blank. The temperature value in the composite plate is symmetrically distributed along the zonal direction relative to the central axis, zigzag distribution along the meridional direction, and gradient distribution in the diagonal direction relative to the center position under the same power condition. The temperature difference of the composite plate with different heating wire is small, the power of power and the temperature of the composite plate have a positive linear correlation, under the same conditions, the higher the power, the greater the temperature of the composite plate; with the increase of the time of electrification, The temperature of the composite plate increased sharply in a short period of time, then gradually increased slowly, although it showed an upward trend, it tended to be stable basically, and the temperature value of the composite plate with different distribution ratio was similar to that of the composite plate with the same power distribution. The denser the distribution of heating wire in the composite plate, the more uniform the temperature distribution in the composite plate. (3) compared with the pure glass fiber composite without heating wire, the tensile strength of the composite with heating function has little change, and the tensile modulus of elasticity is obviously reduced. The tensile strength of composites with heating function decreases with the increase of electric time, and the tensile strength of composites with heating element is decreased more quickly than that of carbon fiber with heating element of constant-copper wire, and the tensile strength of composite material with heating function decreases faster than that of carbon fiber with heating element. However, the time of electrification has little effect on the elastic modulus of the composite plate. Considering the thermal and mechanical properties of textile reinforced composites with heating function, 12K carbon fiber can be selected as heating wire, and the weft density of heating silk is 8 / 10 cm, which can be woven into fabric separately as the interval between weft and glass fiber weft. Fabric reinforced composites with heating function are made for snow melting and ice melting in building, aviation and other fields.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS106;TB33
【相似文献】
相关期刊论文 前10条
1 吕立斌;荀勇;杜梅;;碳/玻混编织物增强复合材料的基本性能[J];纺织导报;2006年09期
2 徐有明;胡荣仙;熊汉国;;竹塑增强复合材料的研究进展及加工现状[J];木材工业;2010年03期
3 赵鸿汉;;全球低碳经济呼唤纤维增强复合材料轻量化 碳纤和玻纤增强复合材料是两个不同层面的功能型轻量化材料[J];玻璃钢;2011年04期
4 邓军;;产业用高性能树脂基多轴向经编增强复合材料需求及发展探讨[J];江苏纺织;2011年12期
5 郭建辉;;“管状机织物增强复合材料的工程应用研究”项目通过天津市教委验收[J];天津工业大学学报;2012年01期
6 徐海燕;;经编多轴向针织物增强复合材料的研究进展[J];产业用纺织品;2012年10期
7 张赋;李旭东;;织物增强复合材料弹性常数的有限元法预测[J];机械工程材料;2014年04期
8 林均品,张勇,陈国良;骨架增强复合材料的微观结构和性能[J];材料工程;2000年06期
9 高金花;李炜;;三维纺织结构增强复合材料的几何模型[J];纤维复合材料;2006年04期
10 戴青春;胡红;;纬编针织增强复合材料的拉伸性能[J];纺织学报;2008年01期
相关会议论文 前10条
1 李斌太;蒋诗才;张宝艳;邢丽英;陈祥宝;;Z向增强复合材料技术研究[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(上)[C];2006年
2 张红梅;祁利民;肖永栋;;玻纤/聚丙烯混纤纱增强复合材料的研究[A];第十四届玻璃钢/复合材料学术年会论文集[C];2001年
3 陈良家;姚学锋;岑松;;不同胞元对单向增强复合材料等效弹性常数预测的影响[A];北京力学会第20届学术年会论文集[C];2014年
4 张永成;;碳/玻璃纤维双增强复合材料在便携式电子设备中的应用[A];中国电子学会化学工艺专业委员会第五届年会论文集[C];2000年
5 王鹏飞;王俊勃;袁建畅;赵川;孙永奇;;织物增强复合材料的拉伸性能[A];第十三届玻璃钢/复合材料学术年会论文集[C];1999年
6 张发;顾伯洪;孙宝忠;;平纹机织玄武岩增强复合材料面内动态压缩行为有限元模拟[A];中国力学大会——2013论文摘要集[C];2013年
7 张凯;段慧玲;王建祥;;蜂窝的微观组织和性能研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
8 林鹏;王长利;李焰;刘文祥;王等旺;;玻纤增强复合材料冲击Hugoniot参数实验研究[A];第九届全国冲击动力学学术会议论文集(下册)[C];2009年
9 卢s,
本文编号:1999391
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1999391.html