低TCR TaN多层膜及宽频、高功率匹配负载的研究
发布时间:2018-06-10 14:08
本文选题:TaN薄膜 + 微波薄膜匹配负载 ; 参考:《电子科技大学》2015年硕士论文
【摘要】:微波功率薄膜匹配负载是微波电路与系统中的基本元件之一,被广泛应用于基站,雷达,航天等领域的无线通信系统中。随着电子系统小型化、集成化和高频化的发展,迫切需求高频、大功率、集成化的薄膜匹配负载。本文对低电阻温度系数的TaN薄膜材料及宽频、大功率的薄膜匹配负载进行了系统的研究。在TaN薄膜材料方面,采用电阻温度系数(TCR)为正的Ta膜和TiN膜与电阻温度系数为负的TaN薄膜构建了低TCR的Ta/TaN和TiN/TaN多层膜材料。实验结果表明,对于Ta与TaN构成的多层膜结构(Ta/TaN)2,当氮流量从3%上升到10%,薄膜的电阻率从165.2μΩ·cm增加到263.6μΩ·cm,TCR从225 ppm/℃下降到-213.54 ppm/℃。当氮流量为4%时,薄膜的TCR为18 ppm/℃,接近于零,但电阻率仅为196.4μΩ·cm。为了解决Ta膜电阻率太小而使得Ta/TaN多层膜电阻率较小的问题,引入了电阻率较大的TiN膜构建了TiN/TaN多层膜。对于TiN/TaN多层膜,随着TaN层溅射时间从5min到17min,薄膜的电阻率从400μΩ·cm下降到260.48μΩ·cm,TCR从960 ppm/℃下降到-164 ppm/℃。在薄膜匹配负载的设计和仿真方面,利用有耗传输线理论建立匹配负载的等效电路,并用HFSS软件进行优化。设计了一款单电阻膜匹配负载1,其工作频率为DC-18 GHz,承载功率为10 W,电压驻波比(VSWR)小于1.3。为了克服匹配负载的工作频率与承载功率不能同时提高的难题,利用功率分配思想设计了阵列型匹配负载2和3,其中负载2的频率为DC-20 GHz,承载功率为40 W,VSWR小于1.3;负载3的频率为DC-20 GHz,承载功率为100 W,VSWR小于1.3,其承载功率是匹配负载2的2.5倍。为了减少高频器件的接地工艺,设计了一款无卷绕电极的负载4,其频率为30 GHz-42 GHz,承载功率为80 W,VSWR小于1.3。利用热仿真软件ePHysics仿真各个负载在满功率下负载的表面温度分布图,仿真结果表明所设计的负载的最高温度均不超过125℃,达到了设计要求。利用射频磁控溅射技术、掩膜图形化和丝网印刷技术制备了薄膜负载器件,并用矢量网络分析仪测试器件的微波性能。所设计的三种负载的VSWR均小于1.3,负载4在工作频率范围内VSWR小于1.5。加载功率测试结果表明,所有匹配负载的表面最高温度均小于125℃,满足了负载器件的功率承载能力。采用红外探测仪观察匹配负载2的温度分布情况,,表明器件达到了功率分配的目的。
[Abstract]:Microwave power film matching load is one of the basic components in microwave circuits and systems. It is widely used in wireless communication systems in base station, radar, space and other fields. With the development of electronic system miniaturization, integration and high frequency, high frequency, high power, integrated film matching load is urgently needed. A number of TaN film materials and wide frequency, high-power film matching loads are systematically studied. In the TaN film materials, the low TCR Ta/TaN and TiN/TaN multilayer films are constructed by using the resistance temperature coefficient (TCR) as the positive Ta film and TiN film and the negative TaN film with the resistance temperature coefficient. The experimental results show that the composition of Ta and TaN is more than that of Ta and TaN. Layer film structure (Ta/TaN) 2, when the nitrogen flow increased from 3% to 10%, the resistivity of the film increased from 165.2 uomega cm to 263.6 muomega cm, and TCR decreased from 225 ppm/ to -213.54 ppm/. When the nitrogen flow rate was 4%, the TCR of the film was 18 ppm/, close to zero, but the resistivity was only 196.4 Omega cm. to make Ta/TaN multilayer films to be too small to make Ta/TaN multilayer films to be too small. The problem of small resistivity is that the TiN/TaN multilayer film is constructed by introducing a large resistivity TiN film. For TiN/TaN multilayer, with the sputtering time of TaN layer from 5min to 17min, the resistivity of the film decreases from 400 uomega cm to 260.48 Omega cm, TCR decreases from 960 ppm/ to -164 ppm/. The equivalent circuit of matching load is set up in the theory of transmission line, and is optimized by HFSS software. A single resistance membrane matching load 1, whose working frequency is DC-18 GHz, the load power is 10 W, and the voltage in Bobbi (VSWR) is less than 1.3. to overcome the problem that the working frequency of the matching load and the load power can not be simultaneously raised. The matching idea designed the array type matching load 2 and 3, of which the frequency of the load 2 is DC-20 GHz, the load power is 40 W, the VSWR is less than 1.3, the load 3 is DC-20 GHz, the load power is 100 W, VSWR is less than 1.3, and the load power is 2.5 times of the matched load 2. In order to reduce the grounding process of high frequency parts, a load 4 load without winding electrode is designed. The frequency is 30 GHz-42 GHz, the bearing power is 80 W, the VSWR is less than 1.3., and the thermal simulation software ePHysics is used to simulate the surface temperature distribution of the load under full power load. The simulation results show that the maximum temperature of the load is not more than 125 degrees C, and the design requirements are reached. The film load device is prepared by the network printing technology, and the microwave performance of the device is tested by a vector network analyzer. The VSWR of the three loads is less than 1.3. The load 4 at the working frequency range of VSWR less than 1.5. loading power test results show that the highest surface temperature of all the matched loads is less than 125 C and satisfies the load device. The temperature distribution of matching load 2 is observed by infrared detector. It shows that the device achieves the purpose of power distribution.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【相似文献】
相关会议论文 前2条
1 梁昌洪;史保俊;;一种新小型匹配负载的机助分析[A];1987年全国微波会议论文集(下)[C];1987年
2 陈智慧;褚庆昕;;一种新的微带线匹配负载FDTD模型[A];2005'全国微波毫米波会议论文集(第三册)[C];2006年
相关硕士学位论文 前4条
1 蒋中东;低TCR TaN多层膜及宽频、高功率匹配负载的研究[D];电子科技大学;2015年
2 曾理;微波功率薄膜负载与衰减器的设计与制作[D];电子科技大学;2014年
3 司旭;低电阻温度系数TaN薄膜及微波功率匹配负载研究[D];电子科技大学;2011年
4 刘智;槽钹型俘能器仿真与实验研究[D];哈尔滨工业大学;2009年
,本文编号:2003487
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2003487.html