当前位置:主页 > 科技论文 > 材料论文 >

拮抗菌产生的抑菌物质合成银纳米粒子的初步研究及五株新菌的鉴定

发布时间:2018-06-15 00:01

  本文选题:银纳米粒子 + 生物合成 ; 参考:《山东大学》2017年硕士论文


【摘要】:银纳米粒子(silver nanoparticles,AgNPs)具有许多独特的物理化学特性,使其在光学、电子、催化以及医药领域等有着非常广泛的应用。过去的数十年,许多制备技术已经能够控制合成的银纳米粒子的粒径、形状和表面形貌。与传统的物理化学方法相比,生物合成法利用细菌、真菌和植物等合成银纳米粒子,避免有毒化学试剂的使用,具有对环境无污染、成本低等优点,吸引了众多研究者的关注。本文以海洋沉积物样品作为实验对象,通过传统的富集方法结合点种法分离拮抗菌,并筛选出一株拮抗菌,利用其产生的抑菌物质合成银纳米粒子。利用紫外-可见分光光度法(UV-Visible spectrometry,UV-Vis)、扫描电子显微镜(Scanning electron microscopy,SEM)和X射线衍射分析(X-ray diffiraction,XRD)的方法对银纳米粒子进行表征;以大肠杆菌和金黄色葡萄球菌作为抑菌对象,对银纳米粒子的抑菌性能进行检测。本实验以威海小石岛自然海域(37° 31'2"N 122° 1'19" E)采集的底泥样品作为实验对象,通过富集、稀释涂布平板后,以大肠杆菌(Escherichia coli ATCC 25922)、金黄色葡萄球菌(Staphylococcus aureus ATCC 29213)、鲍曼不动杆菌(Acinetobacter baumannii ATCC 19606)、副溶血弧菌(Vibrio parahaemolyticus ATCC 17802T)四株病原菌作为指示菌株,以点种法筛选出242株细菌,其中有177株细菌具有抑菌性。基于16SrDNA基因测序对拮抗菌进行鉴定,发现绝大多数菌株属于厚壁菌门。从分离到的拮抗菌中,挑选出一株拮抗性强的细菌DXFD1,经克隆测序得到其完整的16SrDNA序列(1474bp),经比对分析,发现菌株DXFD1与枯草芽孢杆菌枯草亚种(sucillus subtilis subsp.subtilis NCIB 3610T)的 16SrDNA相似性最高(99.59%)。利用菌株DXFD1产生的抗菌物质溶液与AgNO3溶液混合,置于磁力搅拌器上合成银纳米粒子,并对合成的银纳米粒子进行UV-Vis光谱、SEM和XRD表征。结果显示:银纳米粒子多为球形或近球形,粒径分布在30-70 nm,含银纳米粒子的混合液的UV-Vis光谱显示在480 nm处有吸收峰。以大肠杆菌和金黄色葡萄球菌为检测菌株,对银纳米粒子的抑菌性能进行检测。结果表明:银纳米粒子在实验中表现出明显的抑菌效果,对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度均为5 μg/L,最小杀菌浓度为10 μg/mL。检测去除表面附着物质的银纳米粒子的抑菌活性,发现抑菌效果降低,结果表明抑菌物质在合成银纳米粒子的过程中结合到粒子表面,提高银纳米粒子的抑菌性能。本文对从威海附近海域、文登盐场、肥城精致盐场样品中分离到的编号为P131T、N62T、X7T、WDS2C4T与JZ3A21五株新菌进行了多相分类学鉴定。菌株P131T分离自威海近海沉积物,为革兰氏阴性菌、好氧、无滑动性、细胞呈杆状。菌株P131T的最适生长温度为28-30℃,最适pH为7.0-7.5,可耐受的盐度最为2.0-3.0%(w/v)NaCl。基于16S rDNA序列的分析表明,菌株P131T属于比齐奥氏菌属,与属内物种的16SrDNA相似性范围为94.6-97.0%。菌株P131T 主要脂肪酸组分为 iso-C15:0、iso-C15:0G、iso-C17:03-OH 和 iso-C171 ω9c。主要的极性脂成分包括磷脂酰乙醇胺、两种氨脂质、氨磷脂、磷脂和其他的脂质。主要呼吸醌类型为MK-6。基因组DNA的G+C含量是36.7mol%。根据遗传学和表型特征证据,菌株P131T(=KCTC42587T=MCCC1H00124T)代表比齐奥氏菌属的一个新物种,命名为沉积物比齐奥氏菌(Bizionia sediminis sp.nov.)。菌株N62T分离自自威海近海沉积物,为革兰氏阴性、兼性厌氧、无运动性和细胞短杆状。2216E固体培养基28℃培养2天,形成圆形、光滑、橘色和直径约为0.6-1.5mm的单菌落。菌株N62T最适生长温度为28-30℃,最适pH为7.0-7.5和最适盐度2.0-3.0%(w/v)NaCl。菌株N62T主要的脂肪酸组分是iso-C15:0、iso-C15:0G、iso-C17:03-OH 和 C17:13-OH。主要的呼吸醌类型是 MK-6。菌株N62T基因组DNA的G+C含量是35.3 mol%。主要的极性脂是磷脂酰乙醇胺、两种氨脂质、糖脂和三种其他的脂质。基于16S rDNA序列的分析表明,菌株N62T属于藏红花黄色线菌科(Crocinitomicaceae),与寒冷微菌属的物种的16SrDNA序列相似性范围为95.8-97.2%。根据遗传学和表型特征证据,菌株N62T(=KCTC 42589T=MCCC1H00117T),代表寒冷微菌属的一个新物种,命名为橙色寒冷微菌(Brumimicrobium aurantiacum sp.nov.)。菌株X7T分离自自威海近海沉积物,细胞革兰氏阴性、无滑动性、兼性厌氧和短杆状。最适生长温度为28-30℃,最适pH为7.0和最适盐度2.0-3.0%(w/v)NaCl。基于16S rDNA序列的分析表明,菌株X7T属于盐坑微菌属,与Salinimicrobium gaetbulicola有着最高的 16SrDNA 序列相似性(96.3%)。主要脂肪酸为 anteiso-Ci5:0、iso-C15:0、anteiso-C17:1cω9c、iso-C17:1ω9c、C17;02-OH 和iso-C17;03-OH。主要极性脂是一种磷脂酰乙醇胺、一种磷脂、两种氨脂质和五种其他未确定的脂质。主要呼吸醌类型是MK-6。基因组DNA的G+C含量是46.7 mol%。遗传学、表型特征以及化学组分结果表明,菌株X7T(=KCTC 42585T=MCCC1H00115T)代表盐坑微菌属的一个新物种,命名为黄色盐坑微菌(Salinimicrobium flavum sp.nov.)。菌株WDS2C4T和JZ3A21分别从文登盐场、肥城精致盐场的样品分离到,细胞为革兰氏阴性、长杆状和无滑动性。生长范围:可耐受盐度1.0-20.0%(w/v)NaCl(最适 6.0-10.0%),温度 20-50℃(最适 37-40℃)和 pH6.5-9.5(最适 7.0-8.0)。菌株WDS2C4T和菌株JZ3A21主要脂肪酸组分均是cyclo-C19;0ω8c、summed features 8(C181 ω7cand/or C18:1 ω6c)、C18:0、C17:0、C16:0 和 11-methyl C18:1 ω7c。菌株WDS2C4T和JZ3A21主要的呼吸醌类型是Q-10。菌株WDS2C4T的基因组DNA的G+C含量为67.7 mol%,菌株JZ3A21的基因组DNA的G+C含量为67.3 mol%。菌株WDS2C4T主要极性脂成分是两种磷脂、氨脂质、磷脂酰甘油、磷脂酰胆碱和两种糖脂。菌株 WDS2C4T与Rhodovulum marinum JCM 13300T 的 16S rDNA 序列相似性最高为 95.11%。与物种 Albidovulum xiamenense、Paracoccus aestuarii、Rhodobacter vinaykumarii 和Roseivivax pacificus 的模式菌株的相似性分别为94.75%、94.00%、93.88%和93.85%。根据16SrDNA序列建立的三个系统发育树(Neighbour-joining,maximum-likelihood 和 maximurn-parsimony)表明,菌株WDS2C4T和JZ3A21位于Rhodobacteraceae科的单独分支上。根据遗传学和表型特征证据,菌株 WDS2C4T(=KCTC 52227T=NBRC 112331T=MCCC 1H00148T)代表红细菌科的一个新属新种,命名为嗜盐白色盐杆菌(Albihalobacter halophilus gen.nov.sp.nov.)。
[Abstract]:Silver nanoparticles (AgNPs) has many unique physical and chemical properties, which makes it very widely used in the field of optics, electron, catalysis and medicine. In the past few decades, many preparation techniques have been able to control the size, shape and surface morphology of the synthesized silver nanoparticles. Compared with the method, biosynthesis method uses bacteria, fungi and plants to synthesize silver nanoparticles, avoids the use of toxic chemical reagents, has the advantages of no pollution to the environment and low cost, and attracts the attention of many researchers. A strain of antagonist was screened and silver nanoparticles were synthesized by the antibacterial substances produced by them. The silver nanoparticles were characterized by UV visible spectrophotometry (UV-Visible spectrometry, UV-Vis), scanning electron microscope (Scanning electron microscopy, SEM) and X ray diffraction analysis (X-ray diffiraction, XRD). The Bacteriostasis of silver nanoparticles was detected by Bacillus and Staphylococcus aureus as a bacteriostasis object. This experiment took the sediment samples collected in the Weihai small Shidao natural sea area (37 31'2 "N 122 1'19" E) as the experimental object, and by the enrichment and dilution coating plate, the Escherichia coli (Escherichia coli ATCC 25922) and golden yellow grapevine ball were used. Bacteria (Staphylococcus aureus ATCC 29213), Acinetobacter Bauman (Acinetobacter baumannii ATCC 19606), Vibrio parahaemolyticus (Vibrio parahaemolyticus ATCC 17802T) four strains of pathogenic bacteria as indicative strains, 242 strains of bacteria were screened by seed seed method, of which 177 bacteria were bacteriostasis. Based on the sequencing of 16SrDNA gene, the antagonistic bacteria were identified. It was found that most of the strains belonged to the phylum asiasis. From the isolated bacteria, a strain of resistant bacteria DXFD1 was selected and the complete 16SrDNA sequence (1474bp) was cloned and sequenced. The strain DXFD1 was similar to the 16SrDNA of Bacillus subtilis subspecies (sucillus subtilis subsp.subtilis NCIB 3610T). The highest (99.59%). The antibacterial substance produced by the strain DXFD1 is mixed with the AgNO3 solution, and the silver nanoparticles are synthesized on the magnetic stirrer, and the silver nanoparticles are characterized by UV-Vis, SEM and XRD. The results show that the silver nanoparticles are mostly spherical or near the spherical shape, the particle size distribution is 30-70 nm, and the mixing of silver nanoparticles is mixed. The UV-Vis spectrum of the liquid showed a peak of absorption at 480 nm. The Bacteriostasis of silver nanoparticles was detected with Escherichia coli and Staphylococcus aureus. The results showed that silver nanoparticles showed obvious bacteriostasis effect in the experiment, and the minimum inhibitory concentration for Escherichia coli and Staphylococcus aureus were 5 g/L. The bacteriostasis activity of the silver nanoparticles which removed the surface attachment material was detected by the small bactericidal concentration of 10 g/mL.. The results showed that the bacteriostatic effect was reduced. The results showed that the bacteriostatic substance was combined with the surface of the particles in the process of synthesizing silver nanoparticles and improved the antibacterial properties of the silver nanoparticles. This paper is a refined salt field from the sea area near Weihai, Wendeng salt field and Feicheng. Five strains of P131T, N62T, X7T, WDS2C4T and JZ3A21 were identified by multiphase taxonomy. The strain P131T was isolated from the coastal sediments of Weihai. It was Gram-negative bacteria, aerobic, non gliding, and rod-shaped. The optimum growth temperature of the strain P131T was 28-30, the optimum pH was 7.0-7.5, and the tolerable salinity was the most 2.0-3.0%. (w/v) NaCl. based on the analysis of 16S rDNA sequence, the strain P131T belongs to the genus of Bacillus, and the 16SrDNA resemblance to the internal species is the 94.6-97.0%. strain P131T main fatty acids in iso-C15:0, iso-C15:0G, iso-C17:03-OH, and iso-C171 Omega respectively, including phosphatidyl ethanolamine, two kinds of ammonia lipid, ammonia and phosphorus. Lipid, phospholipids and other lipids. The G+C content of the main respiratory quinone type is the MK-6. genome DNA, which is 36.7mol%. based on genetic and phenotypic characteristics. The strain P131T (=KCTC42587T=MCCC1H00124T) represents a new species of the genus Qi, which is named as the sediment than the Bizionia sediminis sp.nov.. The strain N62T is isolated from the self power. The marine sediments were gram-negative, facultative, facultative anaerobic, no motion and cell short rod like.2216E solid medium at 28 C for 2 days, forming a single colony of round, smooth, orange and 0.6-1.5MM diameter. The optimum growth temperature of strain N62T was 28-30, and the optimum pH was 7.0-7.5 and 2.0-3.0% (w/v) NaCl. strain N62T main fat. The acid components are iso-C15:0, iso-C15:0G, iso-C17:03-OH and C17:13-OH., the main type of respiratory quinone is the G+C content of the N62T genome DNA of the MK-6. strain is 35.3 mol%., the main polar lipid is phosphatidyl ethanolamine, two kinds of lipid, sugar and three other lipids. Based on the rDNA sequence of 16S, the strain N62T belongs to the yellow line of saffron. The family of bacteria (Crocinitomicaceae), similar to the 16SrDNA sequence of the species of the cold microbacteria, is 95.8-97.2%. based on the evidence of genetic and phenotypic characteristics, strain N62T (=KCTC 42589T=MCCC1H00117T), representing a new species of cold microbacteria, named orange cold microbacteria (Brumimicrobium aurantiacum sp.nov.). The strain X7T is isolated from self self. The sediments of Weihai offshore were gram-negative, non gliding, facultative and short rod-shaped. The optimum growth temperature was 28-30, the optimum pH was 7 and the optimum salinity 2.0-3.0% (w/v) NaCl. based on 16S rDNA sequence analysis showed that the strain X7T belonged to the salt pit Micrococcus, and the highest 16SrDNA sequence resemblance with Salinimicrobium gaetbulicola (96) .3%). The main fatty acids are anteiso-Ci5:0, iso-C15:0, anteiso-C17:1c Omega 9C, iso-C17:1 Omega 9C, C17, 02-OH and iso-C17; 03-OH. major polar lipid is a phosphatidyl ethanolamine, a kind of phospholipid, two kinds of lipids, and five other undetermined lipids. The results showed that the strain X7T (=KCTC 42585T=MCCC1H00115T) represented a new species of salt pit microbacteria, named as the yellow salt pit microbacteria (Salinimicrobium flavum sp.nov.). The strain WDS2C4T and JZ3A21 were separated from the Wendeng salt field and the Feicheng delicate salt field, and the cells were gram-negative, long rod-shaped and non gliding. Growth range: tolerance to salinity 1.0-20.0% (w/v) NaCl (optimum 6.0-10.0%), temperature 20-50 C (optimum 37-40 C) and pH6.5-9.5 (optimum 7.0-8.0). The main fatty acid components of strain WDS2C4T and strain JZ3A21 are cyclo-C19, 0 Omega 8C, summed features 8 The main respiratory quinone type of S2C4T and JZ3A21 is the G+C content of the genomic DNA of Q-10. strain WDS2C4T is 67.7 mol%, the G+C content of the genomic DNA of the strain JZ3A21 is 67.3 mol%., and the main polar lipids are two kinds of phospholipids, the ammonia lipid, the phosphatidyl glycerol, the phosphatidylcholine and the two kinds of glycolipids. The similarity of the 16S rDNA sequence of 3300T was the highest of 95.11%. and the species Albidovulum xiamenense, Paracoccus aestuarii, Rhodobacter vinaykumarii and Roseivivax pacificus were 94.75%, 94%, 93.88% and three phylogenetic trees established according to the sequence. Elihood and maximurn-parsimony) showed that strain WDS2C4T and JZ3A21 were located in the separate branch of the family Rhodobacteraceae. According to the evidence of genetic and phenotypic characteristics, strain WDS2C4T (=KCTC 52227T=NBRC 112331T=MCCC 1H00148T) represented a new species of a new genus of the family red bacteria family, named halophilic white halophilus (Albihalobacter halophilus). V.sp.nov.).
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1;Q93

【相似文献】

相关期刊论文 前10条

1 M.S.Lee ,C.J.Lee ,K.M.Rezaul ,Y.W.Kwak,D.H. Lee;γ-照射银纳米粒子及其抗生特性(英文)[J];光散射学报;2005年03期

2 张瑛洧;李海龙;孙旭平;;基于银纳米粒子构建荧光传感平台用于核酸检测[J];分析化学;2011年07期

3 何声太,姚建年,解思深,汪裕萍,江鹏,时东霞,张昊旭,庞世瑾,高鸿钧;表面包敷1-壬基硫醇的银纳米粒子形成过程及其自组织有序阵列[J];中国科学(A辑);2001年06期

4 闫海刚;银纳米粒子与血清白蛋白相互作用的滞后效应[J];漳州师范学院学报(自然科学版);2004年03期

5 王刚,端木云,崔一平,张宇,刘宓;聚集效应对银纳米粒子的二阶非线性光学特性的影响研究[J];物理学报;2005年01期

6 李秋玉;张澜萃;于敏;;淀粉保护的银纳米粒子的合成及表征[J];辽宁师范大学学报(自然科学版);2007年03期

7 李秋红;田广袤;;水相中粒径可控银纳米粒子的电化学制备[J];山东大学学报(理学版);2009年07期

8 谭丽华;;银纳米粒子的光催化合成[J];高师理科学刊;2010年04期

9 施建珍;金永龙;李雅丽;王志坚;方靖淮;;光诱导转化法制备片状三角形银纳米粒子的表面增强喇曼散射[J];光子学报;2010年08期

10 柴春镜;白红娟;;沼泽红假单胞菌生物合成银纳米粒子及其抗菌作用(英文)[J];微生物学通报;2010年12期

相关会议论文 前10条

1 王海涛;郑先亮;崔小强;郑伟涛;;温度和波长对光诱导制备银纳米粒子的影响[A];第十七届全国光散射学术会议摘要文集[C];2013年

2 宫永纯;陈国杰;陈延明;沈国良;;丁二胺为还原剂合成银纳米粒子及表征[A];中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集(上)[C];2008年

3 吴焘;刘世勇;;温敏性聚合物/银纳米粒子复合胶囊的制备[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年

4 彭君;凌剑;张玲艳;曹秋娥;丁中涛;;基于光合成纳米簇催化生成银纳米粒子的色度法检测抗坏血酸[A];中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法[C];2014年

5 冯兴丽;黄绍鑫;马厚义;;聚合物保护的金、银纳米粒子的相转移技术[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

6 孙玉静;宋永海;王丽;孙兰兰;郭存兰;杨涛;刘哲林;李壮;;Ⅰ型胶原蛋白与银纳米粒子组装的多层膜在表面增强拉曼光谱中的应用[A];第十四届全国光散射学术会议论文摘要集[C];2007年

7 卢雁;梁慧君;;不同粒径银纳米粒子的合成和表征[A];河南省化学会2012年学术年会论文摘要集[C];2012年

8 丁瑞平;王蒙;孙希鹏;王玉芳;;玻璃基质中银纳米粒子的表面增强拉曼光谱研究[A];第十七届全国光散射学术会议摘要文集[C];2013年

9 周全法;包建春;徐正;;还原-保护法制备形状可控的金银纳米粒子[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年

10 程敬泉;姚素薇;张卫国;王宏智;;超声诱导银纳米粒子的电化学制备及其表征[A];2004年全国电子电镀学术研讨会论文集[C];2004年

相关重要报纸文章 前4条

1 记者 杜华斌;银纳米粒子对某些有益细菌伤害极大[N];科技日报;2011年

2 记者 杜华斌;加开发银纳米粒子水过滤技术[N];科技日报;2011年

3 常丽君;银纳米粒子能自发形成有新证据[N];科技日报;2011年

4 记者 张巍巍;新型银纳米粒子墨水问世[N];科技日报;2009年

相关博士学位论文 前10条

1 凌剑;银纳米粒子的局域表面等离子体共振散射在生化药物分析中的应用研究[D];西南大学;2009年

2 蒋小春;基于银纳米粒子的电化学生物传感器构建及应用[D];华中农业大学;2013年

3 姜翔宇;基于浸润性原理的一维纳米材料制备及其性能研究[D];吉林大学;2016年

4 石洋;基于等离子体共振效应的银纳米粒子与液晶复合材料的研究[D];北京化工大学;2016年

5 封雷;高性能表面增强拉曼基底的低成本制备:调控热点强度与分子可亲性[D];吉林大学;2016年

6 董新义;柠檬酸根修饰银纳米粒子的可控制备[D];吉林大学;2009年

7 唐彬;各向异性银纳米粒子的可控制备、表征、分析与应用[D];吉林大学;2011年

8 王刚;聚集对银纳米粒子非线性光学性质的影响研究[D];东南大学;2005年

9 聂闯;银纳米粒子治疗鼠皮肤及虹膜黑色素瘤有效性及生物毒性的实验研究[D];中国人民解放军医学院;2015年

10 张丹慧;基于银纳米材料的制备及性能研究[D];南京理工大学;2011年

相关硕士学位论文 前10条

1 曲锋;银纳米粒子对大肠杆菌抗菌活性及机理的初步研究[D];南昌大学;2011年

2 王茜;基于银纳米粒子的蛋白质与小分子荧光分析方法研究[D];南京大学;2015年

3 黄梅颖;光化学法合成银纳米粒子/蛋壳膜复合物及其在抑菌和固定化α-淀粉酶中的应用[D];广西大学;2015年

4 罗秦;手性小分子诱导制备具有光学活性的银纳米粒子[D];江苏科技大学;2015年

5 幸红林;电纺纤维负载金属纳米粒子[D];北京化工大学;2015年

6 姜芳;基于热电极的电化学免疫传感研究[D];南京大学;2013年

7 陈书希;环缩醛类化合物光还原法制备银纳米粒子的研究[D];北京化工大学;2015年

8 王艳君;硅包银纳米粒子与脱氧核酶探针对血清铁铜离子的检测分析[D];华中农业大学;2013年

9 石叶萌;银纳米粒子的光诱导法制备及形貌演化机理的研究[D];吉林大学;2016年

10 赵莹;淀粉修饰的银纳米粒子在表面增强拉曼光谱法中的应用[D];吉林大学;2016年



本文编号:2019576

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2019576.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2693c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com