凹凸棒增强聚乙烯基复合材料的制备和性能研究
本文选题:凹凸棒 + 蒙脱土 ; 参考:《上海应用技术学院》2015年硕士论文
【摘要】:本文利用凹凸棒、蒙脱土及碳纳米管等无机材料制备纳米复合载体,负载烯烃聚合催化组分得到高性能聚乙烯催化剂,进行原位聚合制备纳米增强聚乙烯基复合材料。考察了凹凸棒、蒙脱土和碳纳米管对乙烯聚合特性的影响,并研究了多维纳米材料对聚乙烯基复合材料的力学性能、热性能及结晶性能的影响。1、利用凹凸棒和氯化镁制备高活性复合载体,然后负载活性组分TiCl4,制备ATP/MgCl2/TiCl4,原位聚合制备聚乙烯/凹凸棒纳米复合材料。当ATP:MgCl2=2:1其拥有最大的聚合活性。通过对其动力学分析发现,其复合Z-N催化体系。FTIR、拉曼光谱和WAXD分析表明凹凸棒均匀分散在聚乙烯基体中,凹凸棒结构没有发生变化,凹凸棒的加入没有改变聚乙烯的晶型结构,凹凸棒对聚乙烯链段运动的阻碍作用明显,使PE结晶生长受阻。SEM, TEM发现乙烯聚合过程中复制凹凸棒的棒状结构,凹凸棒以棒晶形态被聚乙烯链包裹着。对复合材料力学性能测试发现,当纳米无机材料凹凸棒含量为0.0133wt.%时,其复合材料的屈服强度,拉伸强度,断裂伸长率,拉伸模量,弯曲强度,冲击强度比纯聚乙烯力学性能分别增加约5.83%,50%,13.5%,18.75%,12.6%,15%。TGA测试表明当凹凸棒在聚乙烯基体中含量为0.0133wt.%时,其材料的最大热失重温度比纯聚乙烯增加2.5℃。2、通过原位聚合方法制备凹凸棒/蒙脱土纳米复合材料。用FTIR、WAXD、TEM和拉曼光谱对产物结构进行表征发现:凹凸棒和蒙脱土均匀分散在聚乙烯中,凹凸棒的晶型结构没有发生变化,而蒙脱土的结构片层被聚乙烯链撑开,蒙脱土片层间距增大,发生剥离,其片层以纳米尺寸分散在聚合物中;凹凸棒和蒙脱土的加入影响聚乙烯链的运动,进而对结晶性能产生影响。SEM发现乙烯聚合过程中复制凹凸棒的棒状结构和蒙脱土的管状结构,凹凸棒和蒙脱土以纳米尺寸被聚乙烯链包裹着。当凹凸棒:蒙脱土=1:1时,纳米无机材料在聚乙烯基体中含量为0.015wt.%时,其材料的屈服强度,拉伸强度,断裂伸长率,冲击强度与纯聚乙烯相分别比增加了5%,57%,22%,14%,体现出最优的力学性能;聚乙烯/凹凸棒/蒙脱土纳米复合材料的力学性能相比于单维纳米复合材料和纯聚乙烯显著改善,充分体现多维纳米无机材料的协同增强作用。TGA测试表明,其与聚乙烯树脂材料热稳定型相比,复合材料最大分解速率所对应的温度提高9.56℃。3、以ATP/CNTs/MgCl2/TiCl4为催化体系,原位聚合制备聚乙烯/凹凸棒/蒙脱土纳米复合材料。用FTIR、WAXD、SEM、TEM和拉曼光谱对聚合物结构进行表征发现测试:凹凸棒和碳纳米管均匀分散在聚乙烯中,凹凸棒和碳纳米管的晶型结构没有发生变化,它们以纳米尺寸分散在聚乙烯基体中:凹凸棒和碳纳米管的加入影响聚乙烯链的运动,进而对其结晶性能产生影响。SEM发现乙烯聚合过程中复制凹凸棒的棒状结构和碳纳米管的管状结构,凹凸棒和碳纳米管以纳米尺寸被聚乙烯链包裹着。通过调节凹凸棒和碳纳米管制备一系列催化剂,发现当凹凸棒与碳纳米管质量比为7:1时,催化聚合中无机材料组分在0.0124wt.%时,力学性能最优;其屈服强度、拉伸强度、断裂伸长率、冲击强度相比于纯聚乙烯其性能分别增加了2.5%,65%,14.3%,20.2%;相比于聚乙烯/凹凸棒和聚乙烯/碳纳米管纳米复合材料其力学性能有所增加,说明凹凸棒和碳纳米管的加入对聚乙烯纳米复合材料有协同增强作用。TGA分析表明,其与聚乙烯树脂材料热稳定性相比,当纳米无机材料含量在0.01-0.02 wt.%时,最大分解速率所对应的温度提高7.48℃。
[Abstract]:In this paper, the nano composite carrier was prepared by the inorganic materials such as attapulgite, montmorillonite and carbon nanotube, and high performance polyethylene catalyst was obtained by loading olefin polymerization. The effect of attapulgite, montmorillonite and carbon nanotube on the polymerization of ethylene was investigated. The effect of multi-dimensional nanomaterials on the mechanical properties, thermal properties and crystallization properties of polyethylene matrix composites.1, using attapulgite and magnesium chloride to prepare highly active composite carrier, and then load the active component TiCl4, prepare ATP/MgCl2/TiCl4, in situ polymerization to prepare polyethylene / attapulgite nanocomposites. When ATP:MgCl2=2:1 has the largest aggregation. The kinetic analysis shows that the composite Z-N catalytic system.FTIR, Raman spectrum and WAXD analysis show that the attapulgite is uniformly dispersed in the polyethylene matrix, and the structure of the attapulgite has not changed. The attapulgite does not change the crystalline structure of the polyethylene, and the attapulgite has an obvious hindrance to the movement of the polyethylene chain, so that PE The crystal growth is blocked by.SEM, and TEM is found to copy the rod like structure of the attapulgite in the process of ethylene polymerization. The attapulgite is wrapped in the rod crystal form in the polyethylene chain. The mechanical properties of the composite materials are tested. The yield strength, tensile strength, elongation at break and tensile modulus of the composites are found when the content of the nano inorganic material attapulgite is 0.0133wt.%. The flexural strength and impact strength increased by about 5.83%, 50%, 13.5%, 18.75%, 12.6%, respectively. The 15%.TGA test showed that when the attapulgite content in the polyethylene matrix was 0.0133wt.%, the maximum thermal weight loss temperature of the material was 2.5 C.2 higher than that of pure polyethylene, and the attapulgite / montmorillonite nanocomposite was prepared by in-situ polymerization. The structure of the product was characterized by FTIR, WAXD, TEM and Raman spectra. It was found that the attapulgite and montmorillonite were dispersed uniformly in polyethylene. The crystal structure of the attapulgite was not changed, while the structure layer of the montmorillonite was distracted by the polyethylene chain, the interlayer spacing of the montmorillonite was increased, and the layer was dispersed in the nanometer size in the polymer. In addition, the addition of attapulgite and montmorillonite influences the movement of polyethylene chain and the effect on the crystallization performance..SEM found the rod like structure of the attapulgite and the tubular structure of montmorillonite in the process of ethylene polymerization. The attapulgite and montmorillonite are wrapped in the polyethylene chain in nanoscale. When the attapulgite: montmorillonite =1:1, nano inorganic material When the content of the polyethylene matrix is 0.015wt.%, the yield strength, tensile strength, elongation at break and the ratio of impact strength to pure polyethylene are increased by 5%, 57%, 22%, 14%, respectively, and the mechanical properties of polyethylene / attapulgite / montmorillonite nanocomposites are compared with single dimensional nanocomposites and pure materials. Polyethylene significantly improved and fully reflected the synergistic enhancement of multi-dimensional nano inorganic materials..TGA showed that compared with the thermal stability of polyethylene resin, the temperature of the maximum decomposition rate of the composites increased by 9.56.3, with ATP/CNTs/MgCl2/TiCl4 as the catalytic system and in situ polymerization of polyethylene / attapulgite / montmorillonite. FTIR, WAXD, SEM, TEM and Raman spectra were used to characterize the polymer structure. The attapulgite and carbon nanotubes were dispersed uniformly in polyethylene. The crystal structure of the attapulgite and CNTs did not change, and they were dispersed in the polyethylene matrix in nanoscale size: the addition of attapulgite and carbon nanotubes. The motion of the ethylene chain and the effect on its crystalline properties.SEM found that the rod like structure of the attapulgite and the tubular structure of the carbon nanotubes were replicated during the polymerization of ethylene. The attapulgite and carbon nanotubes were wrapped in the polyethylene chain in nanoscale. A series of catalysts were prepared by adjusting the bump and carbon nanotube, and found as the attapulgite and carbon nanotube. When the mass ratio of the rice tube is 7:1, the mechanical properties of the inorganic materials in the catalytic polymerization at 0.0124wt.% are the best, the yield strength, the tensile strength, the elongation at break and the impact strength are 2.5%, 65%, 14.3%, 20.2%, respectively, compared with the properties of pure polyethylene, compared to the polyethylene / Attapulgite and polyethylene / carbon nanotube nanocomposites. The mechanical properties are increased, indicating that the addition of the attapulgite and carbon nanotube has synergistic enhancement on the polyethylene nanocomposites..TGA analysis shows that, compared with the thermal stability of the polyethylene resin, the maximum decomposition rate of the nano inorganic material at 0.01-0.02 wt.% is increased by 7.48.
【学位授予单位】:上海应用技术学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33
【参考文献】
相关期刊论文 前10条
1 王新宇,漆宗能,王佛松;聚合物-层状硅酸盐纳米复合材料制备及应用[J];工程塑料应用;1999年02期
2 王传洋,黄汉雄;HDPE/蒙脱土纳米复合材料流变性能的研究[J];工程塑料应用;2003年03期
3 张春雨;蔡洪光;陈斌;董为民;穆志远;张学全;;原位聚合法制备超疏水的聚乙烯纳米复合材料[J];催化学报;2008年01期
4 盛淼,杜中杰,荣峻峰,励杭泉;聚乙烯/凹凸棒石纳米复合材料的微观结构与力学性能[J];高分子材料科学与工程;2003年02期
5 王平华,徐国永;原位聚合制备LDPE/凹凸棒土纳米复合材料[J];高分子材料科学与工程;2005年03期
6 贺福;;用拉曼光谱研究碳纤维的结构[J];高科技纤维与应用;2005年06期
7 周杰,刘宁,李云,马毅杰;凹凸棒石粘土的显微结构特征[J];硅酸盐通报;1999年06期
8 黄健花;刘元法;金青哲;王兴国;;加热影响凹凸棒土结构的光谱分析[J];光谱学与光谱分析;2007年02期
9 刘钦甫,糜家铃,付正;聚乙烯/蒙脱土纳米复合材料的制备及性能研究[J];硅酸盐学报;2004年11期
10 杨美珠;石光;张力;杨丽庭;林少全;;新型无卤阻燃聚丙烯的制备以及性能研究[J];华南师范大学学报(自然科学版);2009年03期
相关硕士学位论文 前1条
1 杨俊凤;MgCl_2/TiCl_4催化剂的制备及其催化乙烯淤浆聚合[D];华东理工大学;2011年
,本文编号:2020494
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2020494.html