当前位置:主页 > 科技论文 > 材料论文 >

弯曲法测试二氧化钛纳米线的力学性能

发布时间:2018-06-19 06:49

  本文选题:TiO_2纳米线 + 弯曲测试法 ; 参考:《浙江理工大学》2015年硕士论文


【摘要】:纳米线纳米管等一维纳米材料因其较小的尺寸而具有许多突出的物理特性,如光电热力等。其中力学是最基本的物理性能之一,因此对纳米材料力学特性的研究不仅有助于揭示其尺寸-结构-性能的内在关联,更对微纳传感器及机电器件的发展有着重要意义。到目前为止,仍没有一种方法可以同时实现对不同尺度的一维纳米材料力学性能的测试。本论文首次提出MM3A微操纵系统与扫描电子显微镜(SEM)相结合的测试平台,并采用弯曲法,在此环境下实现了对纳米级单根Ti O2纳米线及微米级Ti O2纳米线束的力学性能的快速准确测量;通过对多次测试结果的分析,发现在微纳尺度下Ti O2纳米线的杨氏模量均没有尺寸依赖性。主要内容及测试结果归纳如下:1.基于弯曲法的悬臂梁模型对单根Ti O2纳米线的力学性能进行了测试。以直径为320nm,长度为5.6μm的单根Ti O2纳米线为例,测得其自由端弯曲过程中的受力-挠度曲线,线性拟合得到斜率K=0.975 N/m,根据理论公式计算杨氏模量E为110.77GPa。通过对直径在270~920nm之间的12根Ti O2纳米线测试数据的分析,得到单根Ti O2纳米线杨氏模模量的平均值?E=120.39GPa;发现直径在100~1000nm范围的Ti O2纳米线的杨氏模量不随直径尺度的变化而改变,没有明显的尺寸依赖性。2.基于弯曲法的双端固支梁模型对Ti O2纳米线束的力学性能进行了测试。以直径为25.6μm,长为1.38mm的Ti O2纳米线束为例,测得其受力-挠度曲线的斜率K=149.8 N/m,计算得到其杨氏模量E为101GPa。同样对直径在25~72μm之间的10根Ti O2纳米线束的测试数据的分析研究,得到Ti O2纳米线束杨氏模模量的平均值?E=92.01GPa;发现直径在10~100μm范围的Ti O2纳米线束的杨氏模量也没有明显的尺寸依赖性。本论文通过对单根Ti O2纳米线及Ti O2纳米线束受力-挠度曲线和杨氏模量的测试,首先发现在100 nm~100μm尺寸范围内,Ti O2纳米线均没有尺寸依赖性;得出了同一物质在不同形态下(单根或者一束),其杨氏模量不变,是其本身属性的结论;其次提出了一种可以快速准确地测量一维微纳米材料力学参数的弯曲测试法,以MM3A微操纵系统与扫描电子显微镜(SEM)相结合作为测试工作平台,实验操作简单且测试结果准确。
[Abstract]:Nanowires, nanotubes, and other one-dimensional nanomaterials have many outstanding physical properties, such as light, electricity, heat, and so on. Mechanics is one of the most basic physical properties. Therefore, the study of mechanical properties of nanomaterials is not only helpful to reveal the intrinsic correlation of its size - structure - properties, but also to micro sensor and electromechanical The development of devices is of great significance. So far, there is still no way to test the mechanical properties of one-dimensional nanomaterials at the same time. In this paper, the test platform combined with MM3A micromanipulation and scanning electron microscope (SEM) was first proposed and the bending method was used. The rapid and accurate measurement of the mechanical properties of the root Ti O2 nanowires and the micron Ti O2 nanowire bundles showed that the young's modulus of the Ti O2 nanowires was not dependent on the size of the micronano scale. The main contents and test results were summarized as follows: 1. the cantilever beam model based on the bending method was used for the single Ti O2 nanowires. The mechanical properties were tested. Taking the single Ti O2 nanowires with a diameter of 320nm and 5.6 u m as an example, the force deflection curve of the free end bending process was measured and the slope K=0.975 N/m was obtained by linear fitting. According to the theoretical formula, the 12 Ti O2 nanowires of the young's modulus E were calculated by the straight diameter of the 12 Ti O2. According to the analysis, the average modulus of modulus of Young's modulus of single Ti O2 nanowires was obtained? E=120.39GPa, and the young's modulus of Ti O2 nanowires with the diameter of 100~1000nm did not change with the size of the diameter, and the mechanical properties of the Ti O2 nanowire bundles were measured by the two end solid supported beam model based on the bending method, and the mechanical properties of the Ti O2 nanowire bundles were measured. An example of a Ti O2 nanoscale beam with a diameter of 25.6 mu m and a long 1.38mm is taken as an example to measure the slope K=149.8 N/m of the force deflection curve. The analysis of the measured data of the young modulus E of the young's modulus E is the same to the 10 Ti O2 nanowire bundles of the diameter between 25~72 and m, and the average modulus of the modulus of the Yang's modulus of the nanowire bundle is obtained. The young's modulus of the Ti O2 nanowire bundles with a diameter of 10~100 mu m was found to have no significant dimensional dependence. This paper first found that the Ti O2 nanowires were not dimensional dependent by testing the force deflection curves of single Ti O2 nanowires and the Ti O2 nanowire bundles and the young's modulus, and the same was found in the same size range of 100 nm~100 m. The young modulus of a substance in a different form (single or one) is the conclusion of its own property. Secondly, a bending test method can be used to measure the mechanical parameters of one dimension and nanometer material quickly and accurately, which is combined with MM3A micromanipulation and scanning electron microscopy (SEM) as the testing work platform and the experimental operation is simple. Simple and accurate test results.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;O614.411

【参考文献】

相关期刊论文 前2条

1 赵全斌;焦继伟;杨恒;林梓鑫;李铁;张颖;王跃林;;基于压阻检测的双端固支硅纳米梁谐振特性研究[J];传感技术学报;2006年05期

2 张段芹;刘建秀;褚金奎;;低维纳米材料的力学性能测试技术研究进展[J];微纳电子技术;2014年07期

相关博士学位论文 前3条

1 吴森;基于AFM的一维纳米材料操纵及力学特性测试技术[D];天津大学;2012年

2 徐临燕;纳米梁谐振器的测试与表征方法研究[D];天津大学;2009年

3 莫日根;氧化锌纳米线力学性能的实验和理论纳米力学研究[D];清华大学;2011年



本文编号:2038988

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2038988.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户13183***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com