周期性金属—介质高效宽谱吸波材料的设计与制备
发布时间:2018-07-03 11:40
本文选题:吸波材料 + 金属-介质 ; 参考:《太原理工大学》2015年硕士论文
【摘要】:电磁吸波材料在各个领域都有很广的应用,高效宽谱的吸波材料在太阳能捕获、光子探测等领域有广泛的应用。近些年来,一维宽谱吸波材料由于其简单的结构以及低成本引起了研究者们的关注。 本论文从理论和实验两个方面研究了一维层状金属-介质吸波材料。理论计算方面,根据转移矩阵理论利用MATLAB软件编写程序,利用程序对金属介质交替的层状吸波结构进行性能的模拟计算和优化;实验方面,我们利用电子束蒸发设备制备了高效宽谱的Ag衬底上Ag纳米颗粒与SiO2交替的周期性吸波材料,且其制备方法简单,光学稳定性好。具体研究结论如下: 1.相较于其它模拟软件,根据传输矩阵理论利用MATLAB编写的计算层状吸波材料吸收率的程序计算速度更快,计算结果吻合。通过对不同材料、不同厚度、不同配比的周期性金属介质交替结构的优化,得出金属为W,介质为MgF2,介质在顶层时的吸收率最优,在300nm-2100nm波段范围内,其总吸收率高达98.1%,且应用在热光伏中时的品质因数最高。 2.利用电子束蒸发设备制备了高效、宽谱Ag衬底上Ag纳米颗粒与SiO2交替的吸波材料。实验结果表明小周期时厚Ag纳米颗粒层器件的吸收优于薄Ag纳米颗粒层的器件的吸收,但周期大于3时,情况则相反。当Ag纳米颗粒层的名义厚度为5nm时,所获得的Ag纳米颗粒比较小,所以入射光可以穿透所有的周期层,因此增加周期可以增加吸光单元。理论模拟表明不同层处的Ag纳米颗粒杂化激发出了丰富的局域表面等离子体效应,,在可见光波段形成了多个吸收峰,因此拓宽了吸收波段。具有18个周期的器件在300-1100nm波段吸收效率高达96%。因其简单的制作工艺及优异的光学性质,该器件可用于太阳能捕获及热辐射调控等方面。
[Abstract]:Electromagnetic absorbing materials are widely used in various fields, and high efficiency and wide spectrum absorbing materials are widely used in solar energy capture, photon detection and so on. In recent years, one-dimensional wide-spectrum absorbing materials have attracted much attention due to their simple structure and low cost. In this paper, one-dimensional laminated metal-dielectric absorbing materials are studied theoretically and experimentally. In theory, according to the transfer matrix theory, the MATLAB software is used to compile the program, and the simulation and optimization of the performance of the layered absorbing structure with alternating metal medium are carried out by the program. The high efficiency and wide spectrum Ag substrates have been prepared by electron beam evaporation (EBE) equipment. The periodic absorbing materials of Ag nanoparticles and Sio _ 2 on Ag substrates are characterized by simple preparation method and good optical stability. The specific conclusions are as follows: 1. Compared with other simulation software, the program compiled by MATLAB based on the transfer matrix theory to calculate the absorptivity of layered absorbing materials is faster and the calculation results are in agreement with each other. By optimizing the alternate structure of periodic metal medium with different materials, different thickness and different ratio, it is concluded that the metal is W, the medium is MgF2, and the absorptivity of the medium in the top layer is optimal, in the range of 300nm-2100nm band, The total absorptivity is up to 98.1, and the quality factor is the highest when it is used in thermal photovoltaic. High efficient, wide-spectrum Ag substrates with Ag nanoparticles and Sio _ 2 were prepared by electron beam evaporation (EBE) equipment. The experimental results show that the absorption of thick Ag nanocrystalline layer in small period is better than that of thin Ag nanocrystalline layer, but when the period is greater than 3, the situation is opposite. When the nominal thickness of Ag nanoparticles is 5nm, the Ag nanoparticles obtained are relatively small, so the incident light can penetrate all periodic layers, so increasing the period can increase the absorption units. The theoretical simulation shows that the hybrid of Ag nanoparticles at different layers excites abundant local surface plasma effects and forms multiple absorption peaks in the visible light band, thus widening the absorption band. The absorption efficiency of the device with 18 cycles in the 300-1100nm band is as high as 96. Because of its simple fabrication process and excellent optical properties, the device can be used in solar energy capture and thermal radiation control.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB34
【参考文献】
相关期刊论文 前3条
1 黄涛,黄英,贺金瑞;吸波材料研究进展[J];玻璃钢/复合材料;2003年01期
2 邢丽英,刘俊能;电阻渐变型结构吸波材料的研究与发展[J];航空材料学报;2000年03期
3 黄煜镔;钱觉时;张建业;;高铁粉煤灰建筑吸波材料研究[J];煤炭学报;2010年01期
本文编号:2093516
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2093516.html