沙柳纤维基轻质工程材料制备工艺的研究
本文选题:沙柳纤维 + 轻质工程材料 ; 参考:《内蒙古农业大学》2015年硕士论文
【摘要】:利用内蒙古西部生长的一种丰富资源沙柳材的纤维制备了一种轻质工程材料,为沙柳资源的利用开辟出了一条新的途径。分析了材料形成的基本原理和选取的原料特点,研究了不同碱处理条件对沙柳纤维结晶度与氢键相对含量的影响,利用响应面分析法优化了材料的制备工艺,研究了三聚氰胺树脂对材料的增强作用,主要内容如下:1、选取了碱浓度为0、10g·L-1、20g·L-1、30g·L-1、40g·L-1、50g·L-1、60g·L-1,碱处理时间为0.5h、1.0h、1.5h、2.0h、2.5h、3.0h,碱处理温度为20℃、40℃、60℃、80℃、100℃,研究了不同碱处理条件对沙柳纤维的结晶度与氢键相对含量的影响,得出以下结论;(1)随着碱浓度的增大,沙柳纤维的结晶度先增大后减小,在10g·L-1时最大,为42.69%;沙柳纤维中分子间氢键O(6)H...O(3')的含量与结晶度变化趋势一致,分子内氢键O(3)H...O(5)的变化趋势与分子间氢键O(6)H...O(3')相反,,分子内氢键O(2)H...O(6)变化趋势较小;(2)随着碱处理时间的增加,沙柳纤维的结晶度先增大后减小,在2.0h时最大,为40.23%;沙柳纤维中分子间氢键O(6)H...O(3')的含量与结晶度变化趋势一致,分子内氢键O(3)H...O(5)的变化趋势与分子间氢键O(6)H...O(3')相反,分子内氢键O(2)H...O(6)的变化趋势不显著;(3)随着碱处理温度的升高,沙柳纤维的结晶度在逐渐增大:沙柳纤维中分子间氢键0(6)H...O(3')的含量与结晶度变化趋势一致,分子内氢键O(3)H...O(5)先保持稳定后逐渐减小,而分子内氢键0(2)H...O(6)的变化趋势不显著。2、以沙柳纤维、PVA、起泡剂和硅酸钠为因素,密度和压缩应力为响应值,采用Box-Benhnken的中心组合试验设计原理,利用Design-Expert.V8.0.6.1软件,对试验结果进行回归分析,得到以下结论:(1)分别建立了响应值密度和压缩应力与四个因素间的二次多项式模型:(2)单因素响应分析知,随着沙柳纤维含量的增大,材料的密度逐渐增大,压缩应力先增大后减小;随着PVA浓度的增大,密度逐渐增大,压缩应力先增大后减小:随着起泡剂含量的增大,密度逐渐减小,压缩应力逐渐减小:随着硅酸钠浓度的增大,材料的密度先减小后增大,压缩应力先增大后减小,但两者变化幅度都不大;(3)选择密度最小、压缩应力最大时,得到的最佳制备工艺条件为:沙柳纤维为38g.PVA为8%,起泡刺为4g,硅酸钠为4%,在该条件下制得的材料密度为0.0412g·cm-3,压缩应力为8.976KPa。3、利用机械发泡法与化学发泡法,并采用溶胶-凝胶原理制备了沙柳纤维基轻质工程材料;研究了添加不同量的三聚氰胺树脂对材料的密度、压缩应力、氧指数、内部基团与热稳定性的影响。结果表明:(1)随三聚氰胺树脂添加量的增大,材料的密度、压缩应力和氧指数都呈现出了增大的趋势;(2)红外分析知,三聚氰胺树脂的加入减弱了羟基—OH与共轭羰基C=O的吸收峰;(3)热重分析表明,三聚氰胺树脂的加入提高了材料在高于340℃之后的热稳定性,且随三聚氰胺树脂添加量的增大,材料的热稳定性增加;(4)差示扫描量热分析知,三聚氰胺树脂的加入抑制了材料在345℃处的吸热反应与420℃处的放热反应,即起到了阻燃作用,且随三聚氰胺树脂添加量的增大,材料的阻燃性增强。
[Abstract]:A light engineering material was prepared from the fiber of a rich resource of Salix in Western Inner Mongolia. A new way was developed for the utilization of Salix resources. The basic principle of the material formation and the characteristics of the selected raw materials were analyzed. The relative content of the crystallinity of Salix fiber and hydrogen bond in different alkali treatment conditions was studied. The preparation process of materials was optimized by response surface analysis. The enhancement effect of melamine resin on materials was studied. The main contents are as follows: 1, the alkali concentration is 0,10g. L-1,20g. L-1,30g. L-1,40g. L-1,50g. L-1,60g. L-1. The alkali treatment time is 0.5h, 1.0h, 1.5h, 2.0h, 2.5h, and alkali treatment temperature is 20, 40, 60, 80. The influence of different alkali treatment conditions on the crystallinity of Salix fiber and the relative hydrogen bond content of Salix fiber was studied at 100 degrees C, and the following conclusion was obtained. (1) with the increase of alkali concentration, the crystallinity of Salix fiber increased first and then decreased, which was the maximum at 10g. L-1, which was 42.69%. The content of intermolecular hydrogen bond O (6) H... O (3') in Salix fiber and crystallinity of Salix fiber tend to change. The change trend of intramolecular hydrogen bond O (3) H... O (5) is opposite to the intermolecular hydrogen bond O (6) H... O (3'), and the intramolecular hydrogen bond O (2) H... O (6) has a smaller trend. (2) with the increase of alkali treatment time, the crystallinity of Salix fiber increases first and then decreases, it is 40.23% at 2.0h, and the content of intermolecular hydrogen bond O (6) in Salix fiber The change trend of crystallinity is the same, the change trend of intramolecular hydrogen bond O (3) H... O (5) is opposite to the intermolecular hydrogen bond O (6) H... O (3'), and the change trend of intramolecular hydrogen bond O (2) H... O (6) is not significant. (3) the crystallinity of Salix fiber increases with the increase of alkali treatment temperature: the content and crystallization of the intermolecular hydrogen bond 0 (6) in Salix fiber, O (6) The trend of degree change is consistent, the intramolecular hydrogen bond O (3) H... O (5) is kept stable first and gradually decreases, while the change trend of intramolecular hydrogen bond 0 (2) H... O (6) is not significant.2, with Salix fiber, PVA, foaming agent and sodium silicate as the factors, density and compressive stress as response values, the central combination test design principle of Box-Benhnken is used and Design-Expert.V8.0. is used in Design-Expert.V8.0.. 6.1 software, the results of the test are regressed and the following conclusions are obtained: (1) the two polynomial model of response value density and compression stress and four factors are established respectively. (2) single factor response analysis knows that the density of the material increases gradually with the increase of the content of Salix fiber, the compressive stress increases first and then decreases; with the concentration of PVA As the density increases, the compressive stress increases first and then decreases: with the increase of the content of the foaming agent, the density decreases and the compressive stress gradually decreases: with the increase of sodium silicate concentration, the density of the material increases first and then increases, the compressive stress increases first and then decreases, but the amplitude of the two changes is not significant; (3) the minimum selection density and compression stress are made. The optimum preparation conditions are as follows: the fiber of Salix is 38g.PVA 8%, the foaming prick is 4G, the sodium silicate is 4%, the density of the material is 0.0412g. Cm-3, the compressive stress is 8.976KPa.3, the mechanical foaming method and chemical foaming method are used, and the sol-gel principle is used to prepare the lightweight engineering material of Salix fiber base. The effects of different amounts of melamine resin on the density, compressive stress, oxygen index, internal group and thermal stability were investigated. The results showed that: (1) the density, compressive stress and oxygen index of the melamine resin increased with the increase of the amount of melamine resin, and (2) the addition of melamine resin was known by infrared analysis. The absorption peaks of hydroxyl OH and conjugated carbonyl C=O were weakened; (3) thermogravimetric analysis showed that the addition of melamine resin increased the thermal stability of the material at higher than 340 degrees C, and increased the thermal stability of the material with the increase of the addition of melamine resin; (4) the addition of melamine resin was known to inhibit the material. The heat absorption of the material at 345 C and the exothermic reaction at 420 centigrade, which is the flame retardancy, and the flame retardancy of the material increases with the increase of the amount of melamine resin.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB332
【参考文献】
相关期刊论文 前10条
1 王正;张桂兰;高黎;常亮;;木基发泡复合材料微观构造及性能研究[J];北京林业大学学报;2007年03期
2 史锃瑛;刘晔;;缓冲包装材料发泡机理及泡体破坏因素的研究[J];包装工程;2007年07期
3 周盛华;刘晔;;竹纤维发泡缓冲包装材料的静态力学性能建模[J];包装工程;2009年06期
4 谢拥群;陈彦;魏起华;张德智;;机械发泡技术制备网状植物纤维材料的研究[J];福建林学院学报;2008年03期
5 刘兴静;孙峗;林亚玲;赵有斌;;天然纤维预处理技术研究进展[J];高分子通报;2011年11期
6 邹君;李庆春;;蔗渣纤维缓冲包装材料的研制[J];广西轻工业;2008年06期
7 傅阳;张守华;邹凯;张敏;;淀粉/豆渣/纳米蒙脱土复合发泡缓冲材料的制备及性能研究[J];包装工程;2012年17期
8 蔺焘;郭文静;方露;王正;;3种方法计算棉秆纤维素结晶度的比较分析[J];东北林业大学学报;2013年02期
9 滕国敏,张勇,万超瑛,王如寅;木塑复合材料的界面改性方法[J];化工新型材料;2005年05期
10 伍波;张求慧;王永波;;木塑复合材料界面化学改性研究进展[J];化工新型材料;2010年05期
相关重要报纸文章 前2条
1 正雅;[N];中国包装报;2001年
2 陈红;[N];中国包装报;2003年
相关博士学位论文 前2条
1 王欣;香根草特性及其用途的研究[D];南京林业大学;2010年
2 刘景宏;木材纤维基超轻质材料的阻燃性能及机理研究[D];福建农林大学;2013年
相关硕士学位论文 前6条
1 鲁飞飞;膨化植物纤维与无机物复合的研究[D];福建农林大学;2004年
2 李媛媛;发泡植物纤维模压制品的关键生产技术研究[D];重庆工商大学;2008年
3 郁青;淀粉/秸秆发泡缓冲材料的制备及其性能研究[D];南京农业大学;2009年
4 傅七兰;超轻质植物纤维材料的防水性研究[D];福建农林大学;2013年
5 林振;水玻璃凝胶复合植物纤维发泡材料力学性能的研究[D];福建农林大学;2013年
6 曹斌;木质剩余物缓冲包装材料制备工艺的研究[D];东北林业大学;2013年
本文编号:2095769
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2095769.html