添加碱金属化合物对Li-N-H体系储氢材料动力学性能的增强
[Abstract]:With the increasing demand for energy, it is imminent to find green, environmental and renewable energy instead of the current secondary fossil energy. Hydrogen energy is one of the candidates for the future ideal energy carrier by virtue of its clean environment, large storage and high energy density. The important technical problem is to solve the problem of hydrogen storage. In many different kinds of hydrogen storage materials, "metal nitrogen hydrogen" based hydrogen storage material has become a hot spot for the researchers of hydrogen storage materials in recent years because of its high hydrogen storage capacity, low operating temperature and good dynamic performance. Since Chen Ping and others first proposed L in 2002. After the hydrogen storage system of i-N-H, the system is widely concerned around the world. This article suggests that Li3N can store more than 10 wt% of hydrogen by two consecutive reactions. After that, the LiNH2-LiH system is also widely studied as a classic hydrogen storage system, because it can easily absorb / release 6. through the following reaction. 5 wt% hydrogen. In recent years, some studies have shown that alkali metal potassium compounds, including potassium hydroxide, potassium amino acid, potassium hydroxide, and potassium halide have good catalytic effect in improving the dynamic properties of Li-Mg-N-H hydrogen storage system. Based on this, the alkali metal hydroxide, alkali metal hydride, alkali metal amino group are discussed and discussed. The effect of addition of chemicals on the hydrogen storage properties of Li-N-H system, and the reaction mechanism of the reaction mechanism,.1. alkali metal hydroxide added to the dehydrogenation of hydrogen storage materials in the LiNH2-LiH system, we studied and discussed the effects of the addition of three kinds of hydroxides of LiOH, NaOH, KOH on the dehydrogenation performance of the LiNH2-LiH system, and the determination of three kinds of alkali metal hydrogen oxidation. Among the three kinds of hydroxides, KOH has the most remarkable effect on the dehydrogenation performance of the LiNH2-LiH system. Compared with the wider dehydrogenation curve of the LiNH2-LiH sample, the peak shape becomes sharp after the addition of 5mol% KOH, and the starting temperature of the hydrogen release is reduced by 36, and the peak temperature is reduced by 42. The sign shows that the alkali metal hydroxide can react with LiH to produce the corresponding hydride during the ball milling process, and this phenomenon is the main reason for the enhancement of the dynamic properties of the LiNH2-LiH system added by the alkali metal hydroxide. The addition of.2. alkali metal hydride to the dehydrogenation performance of the hydrogen storage material in the LiNH2-LiH system has been studied and discussed. The dehydrogenation performance of the LiNH2-LiH system with three kinds of alkali metal hydride (LiH, NaH, KH) was added. The results showed that the dehydrogenation performance of the three kinds of alkali metal hydrides had obvious enhancement effect on the dehydrogenation performance of the LiNH2-LiH system, and the LiNH2-LiH system with KH added was the most significant. Compared with the wider dehydrogenation curve of the LiNH2-LiH sample, the addition of 5 mol%KH was added. Then the peak shape becomes sharp, and the starting temperature of the hydrogen release is reduced by 20, and the peak temperature is reduced by 30. Through the mechanism, we conclude that the dynamic performance of the KH adding LiNH2-LiH system is enhanced because the reaction between KH and NH3 has a catalytic effect and accelerates the dehydrogenation reaction. As for the non added LiNH2-LiH samples, the LiNH2-LiH samples added by 5 mol%KH showed the ideal cyclic properties of the.3. base metal aminoides to enhance the dehydrogenation performance of the LiNH2-LiH system hydrogen storage materials. We discussed the dehydrogenation properties of the LiNH2-LiH system of adding three kinds of alkali metal aminoides (LiNH2, NaNH2, KNH2). The results show that only KNH2 in the three alkali metal amino groups has obvious enhancement effect on dehydrogenation performance of LiNH2-LiH system. Compared with the wider dehydrogenation curve of LiNH2-LiH sample, the peak shape becomes sharp after adding 5 mol%KNH2, and the starting temperature of the hydrogen release is reduced by 40, and the peak temperature is reduced by 34. In the ball milling process, KNH2 reacts with LiH to produce KH, which is the main reason for the improvement of LiNH2-LiH dehydrogenation kinetics for adding 5mol% KNH2. Finally, in the cycle performance test, the LiNH2-LiH samples with 5 mol% KNH2, compared to the non added LiNH2-LiH samples, show the ideal cycle performance.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB34
【相似文献】
相关期刊论文 前10条
1 吴峻青;周仕学;王振华;吕英海;;镍对镁碳复合储氢材料性能的影响[J];矿冶工程;2008年04期
2 朱敏;陈立新;雷永泉;陈军;车成卫;;储氢材料领域国家自然科学基金项目集团管理回顾[J];中国科学基金;2009年02期
3 ;大连化物所储氢材料研究获进展[J];河南化工;2009年06期
4 范士锋;;金属储氢材料研究进展[J];化学推进剂与高分子材料;2010年02期
5 ;吸附储氢材料研究获进展[J];化工科技市场;2010年05期
6 蒋利军;;稀土储氢材料现状及展望[J];四川稀土;2010年01期
7 ;美研制出新型液态储氢材料[J];化工中间体;2011年12期
8 王洪晶;林秀梅;车文实;;储氢材料的研究进展[J];中国科技投资;2012年26期
9 林江;氢化物储氢材料及其热泵和空调的研究进展[J];新技术新工艺;2002年01期
10 张文丛,房文斌,罗念宁,于振兴,王尔德;储氢材料性能测试装置设计及应用[J];中国有色金属学报;2003年03期
相关会议论文 前10条
1 崔明功;李燕月;刘吉平;付松;;金属储氢材料研究进展[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
2 周仕学;张同环;张鸣林;张彩娥;陆帅帅;赵培伟;张文才;;气氛对镁基储氢材料与噻吩反应的影响[A];第七届中国功能材料及其应用学术会议论文集(第3分册)[C];2010年
3 张鸣林;杨敏建;张同环;张光伟;陈海鹏;;钼在反应球磨制备镁基储氢材料中的作用[A];第七届中国功能材料及其应用学术会议论文集(第6分册)[C];2010年
4 高萍;刘吉平;崔明功;付松;张娜;;储氢材料初探[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
5 罗晓东;张静;靳晓磊;胡宾宾;;储氢材料的研究现状与进展[A];2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C];2007年
6 雷桂芹;周仕学;;碳种类对镁碳复合储氢材料性能的影响[A];第十三届全国粉体工程及矿产资源高效开发利用研讨会论文专辑[C];2007年
7 刘啸锋;马光;李银娥;姜婷;郑晶;;储氢材料的研究与进展[A];第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C];2007年
8 孙立贤;张箭;宋莉芳;刘淑生;姜春红;司晓亮;焦成丽;王爽;徐芬;李芬;;新型储氢材料的热力学与动力学研究[A];中国化学会第十五届全国化学热力学和热分析学术会议论文摘要[C];2010年
9 王平;;以车载储氢为目标的储氢材料研究进展[A];第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C];2007年
10 周仕学;杨敏建;雷桂芹;吕英海;王斌;;微晶碳用于制备镁基储氢材料的研究[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
相关重要报纸文章 前9条
1 记者 姚耀;氨硼烷化合物成储氢材料新星[N];中国化工报;2009年
2 记者 刘霞;美研制出硼—氮基液态储氢材料[N];科技日报;2011年
3 戴年珍 张珍丽 赵永江;储氢材料的专利信息分析和利用[N];中国知识产权报;2012年
4 本报记者 柳方秀;让“明日之花”盛开得更加艳丽[N];中国冶金报;2010年
5 陶加;吸附储氢材料研究获进展[N];中国化工报;2010年
6 本报记者 李宏乾;氢储运:多条途径共同发展[N];中国化工报;2011年
7 王玲;大连化物所储氢材料研究获进展[N];中国化工报;2009年
8 冯卫东;美用纳米重力计发掘新储氢材料[N];科技日报;2008年
9 羽佳;储氢材料 21世纪新能源的“储蓄所”[N];中国有色金属报;2002年
相关博士学位论文 前10条
1 宋云;轻质储氢材料的改性研究[D];复旦大学;2014年
2 陈晓伟;硼氮基储氢材料放氢机理及改性研究[D];复旦大学;2014年
3 刘光;新型高容量镁基复合储氢材料的制备及性能研究[D];南开大学;2013年
4 董琪;基于金属有机碳化物的储氢材料的理论研究[D];吉林大学;2010年
5 杨敏建;镁基储氢材料的制备及对二硫化碳、噻吩的加氢性能研究[D];山东科技大学;2010年
6 郑时有;轻质储氢材料的研究[D];复旦大学;2009年
7 马建丽;两类无机储氢材料的制备、表征及其储氢性能研究[D];南开大学;2012年
8 邵杰;硼氢化锂基储氢材料的优化改性及其机理研究[D];浙江大学;2015年
9 吴峻青;纳米碳复合储氢材料制备及储氢机理的研究[D];山东科技大学;2008年
10 郭军;储氢材料的第一性原理研究[D];中南大学;2011年
相关硕士学位论文 前10条
1 赵汪;金属氮氢化物复合材料储氢循环性能研究[D];北京有色金属研究总院;2015年
2 朱和鹏;LiBH_4基复合储氢材料改性研究[D];浙江大学;2014年
3 孙立芹;Mg基储氢材料释氢性能的掺杂效应及机理[D];湘潭大学;2015年
4 葛俊;添加碱金属化合物对Li-N-H体系储氢材料动力学性能的增强[D];扬州大学;2015年
5 张旭刚;新型金属氮化物储氢材料的性能[D];北京有色金属研究总院;2011年
6 杨敏建;储氢材料中金属作用机理的研究[D];山东科技大学;2007年
7 张同环;镁基储氢材料与噻吩反应影响因素的研究[D];山东科技大学;2011年
8 刘慧;新型轻质元素储氢材料储放氢性能研究[D];长沙理工大学;2013年
9 刘华;轻金属储氢材料的结构和电子性质的理论研究[D];北京化工大学;2010年
10 谭琦;碳镁储氢材料控制性制备及放氢动力学的研究[D];山东科技大学;2009年
,本文编号:2121190
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2121190.html