形貌可控钴镍纳米金属复合氧化物的设计制备及超电容性能研究
[Abstract]:The energy problem is an important factor restricting the sustainable development of the society. People have brought a series of environmental pollution problems to the overexploitation and utilization of traditional fossil energy. This has seriously threatened the survival and development of human beings. At the same time, human beings are especially in the development of new clean energy and the storage and transformation of energy. As a new type of energy storage equipment, the supercapacitor has high power density and long service life. However, the high cost and low energy density limit the development of the supercapacitor, and the electrode material is the key to determine the capacity of the supercapacitor. Therefore, the development of new type is cheap and high energy. The electrode materials with high density and high stability are the focus of current research. Based on the electrode materials such as nickel cobalt transition metal elements and multi wall carbon nanotubes, this paper aims to prepare the electrode materials with low cost, high specific capacitance and high stability, and the preparation of various electrode materials by simple synthetic method and material combination. The main research contents are as follows: first, a green synthesis method, a simple preparation process, is used to synthesize the transition metal oxide Co_3O_4 and NiO with the diluted ammonia water as reagents. The catalyst has a typical Faraday pseudacapacitor property. Co_3O_4 is used as an example. The three electrode test system was used in the KOH electrolyte solution of 1mol L-1 with the active substance and acetylene black. The results showed that the electrode material had the best electrochemical performance when the ratio was 8:1, and the Co_3O_4 showed a typical pseudopotential characteristic and the ratio of the current density of the 1 A g~ (-1). The capacitance is 394 F g~ (-1). According to this proportion, the NiO is tested, the specific capacitance reaches 139 F g~ (-1). Second, the two metals of nickel and cobalt are combined to investigate the effect of the synergistic effect between the two kinds of transition metals on the performance of the specific capacitance and the mechanism of action. By controlling the calcining temperature of 150250350 and 450 degrees for 3 hours, X ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to demonstrate the synthesis of two element composite metal (hydrogen) oxides with flake structure. The further study shows that the different calcination temperatures lead to the dehydration of the materials. It has a great influence on the morphology and performance of the material. Through the electrochemical test of the sample materials at different calcination temperatures, it is found that the sample with a calcining temperature of 250oC has excellent performance in both cyclic voltammetry and constant current charge discharge test, and the scanning speed is 10 m. When V S-1 is up to 1296 F g~ (-1), the specific capacitance is up to 1427 F g~ (-1) at the current density of 1 A g~ (-1). Even if the current density increases to 10 A, the specific capacitance is still up to 1270, and the specific capacitance is still up to 89%. In general, the content of nickel and cobalt in the material is larger than that of the supercapacitor. After determining the optimum calcining temperature, we explored the compound ratio of the two elements and prepared the cobalt and nickel at a different molar ratio at the same calcining temperature of 250, and the electrochemical test was carried out. The results showed that the different ratios of nickel and cobalt had a great effect on the capacitance. When the ratio of cobalt and nickel is 2:1, the performance of the material is best. Finally, the electrochemical performance of the sample material after the composite is compared with the single nickel oxide and cobalt oxide synthesized under the same condition. The results show that the electrochemical performance of the composite catalyst has been greatly improved and the stability test results are carried out. It is also shown that after a 3000 ring cycle of 10 A g~ (-1), the specific capacitance attenuates only 7.7% and shows excellent stability. This shows that in the preparation process of hot and high temperature calcination, the composite of nickel and cobalt two greatly improves the capacitance of the material. Third, in order to further improve the electrochemistry of nickel cobalt hydroxide. Properties, we physically compounded the synthesized nickel cobalt hydroxide with MWCNTs, and explored the compound ratio of the two. The two groups were mixed according to the different mass ratio. The results of electrochemical testing showed that the effect was best when the compound ratio was 9:1, and the current density of 1 A g~ (-1) in the KOH electrolyte solution of 1mol L-1. The specific capacitance is up to 1675 F g~ (-1), and the comparison with the composite before the composite shows that the specific capacitance is greatly improved. It shows that the composite of the tubular structure of MWCNTs with the lamellar structure of nickel cobalt hydroxide greatly improves the conductivity of the material and makes the capacitance performance of the material be further improved. The stability test of the material is carried out. It shows that after 3000 cycles, the capacitance retention rate is still 93.2%, showing a good stability.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1;TM53
【相似文献】
相关期刊论文 前10条
1 李越;郝晓刚;王忠德;张忠林;梁镇海;刘世斌;;单极脉冲电合成聚苯胺膜及其超级电容性能[J];化工学报;2010年S1期
2 韩丹丹;陈野;张密林;舒畅;张春霞;徐鹏程;;掺钇纳米NiO的制备及其超大电容性能研究[J];电化学;2006年03期
3 陈野;韩丹丹;张密林;葛鑫;;掺镧纳米NiO的制备及超大电容性能研究[J];中国稀土学报;2006年06期
4 赵晶晶;郑明波;吕洪岭;李念武;黄毅;张松涛;曹洁明;;低温热处理制备石墨烯-氧化钴及其超级电容性能[J];化学研究;2012年03期
5 李学良;何金铧;徐海龙;;氧化镍的水热制备及超电容性能研究[J];金属功能材料;2011年05期
6 尚秀丽;索陇宁;冯文成;吴海霞;胡中爱;;聚苯胺/聚砜复合材料的制备及其超级电容性能[J];应用化学;2013年09期
7 陈野;舒畅;张春霞;葛鑫;张密林;;氧化镍的合成及其超级电容性能[J];应用化学;2007年08期
8 廖书田;郑明波;高静贤;曹謇;杨振江;陈惠钦;曹洁明;陶杰;;一步法合成具有二级孔道的有序介孔碳材料及其超电容性能研究[J];化工新型材料;2009年04期
9 王永文;郑明波;曹謇;曹洁明;姬广斌;陶杰;;介孔碳纳米纤维制备与超电容性能研究[J];电化学;2010年02期
10 田颖;阎景旺;薛荣;衣宝廉;;电解质浓度和温度对活性炭电容性能的影响(英文)[J];物理化学学报;2011年02期
相关会议论文 前10条
1 孙红梅;彭亮波;文萃;陈红雨;舒东;;水钠锰矿的制备及超级电容性能研究[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年
2 孙红梅;孙振杰;陈红雨;舒东;;水钠锰矿的制备及超级电容性能研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
3 程杰;曹高萍;杨裕生;;锰氧化物干凝胶电容性能研究[A];第十二届中国固态离子学学术会议论文集[C];2004年
4 张雅琨;陈亮;李建玲;王新东;叶锋;杨军;;不同电解液对聚苯胺电容性能的影响[A];中国化学会第28届学术年会第10分会场摘要集[C];2012年
5 刘晓霞;孙丽杰;窦玉倩;吴建;;基于无机-有机杂化的聚苯胺一维生长调控及超电容性能研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
6 刘宗怀;杨祖培;王增林;;剥离/组装技术制备纳米层状电极材料及其电容性能研究[A];中国化学会第28届学术年会第10分会场摘要集[C];2012年
7 闫广超;范磊;郭荣;;介孔碳小球复合材料的制备及其电容性能研究[A];中国化学会第29届学术年会摘要集——第26分会:胶体与界面[C];2014年
8 李庆伟;李园园;张经纬;霍开富;;多级孔泡沫碳材料的制备和电容性能[A];第一届全国储能科学与技术大会摘要集[C];2014年
9 杨晓青;闫方玉;吴丁财;符若文;;有序炭的氨气改性及其超电容性能研究[A];第22届炭—石墨材料学术会论文集[C];2010年
10 李学良;段体兰;蒋英;李子荣;;有机胺化物作用下炭气凝胶的制备与电容性能研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年
相关重要报纸文章 前6条
1 万鹏;钽电容,追求极致性能的选择[N];电脑报;2008年
2 陕西 张思远;看电容,“挑”主板[N];电脑报;2004年
3 太子;放眼看元件[N];电脑报;2004年
4 杨树钢 孙立新;超级电容 电梯节能新方向[N];政府采购信息报;2009年
5 青岛 孙海善;联想电脑常见故障五例[N];电子报;2011年
6 倪永华;让“刹车”贡献出电能[N];科技日报;2004年
相关博士学位论文 前10条
1 徐江;碳化物衍生碳的形成机理及其超级电容性能研究[D];燕山大学;2015年
2 万厚钊;过渡金属硫化物中空纳米结构及其阵列的赝电容特性[D];华中科技大学;2015年
3 朱君秋;含锆(铪)活性氧化物的电容性能及其与结构的关系研究[D];福州大学;2013年
4 薛云;尖晶石型锰系氧化物的合成及超级电容性能研究[D];哈尔滨工程大学;2008年
5 张燕萍;基于纳米碳及其金属氧化物复合电极的超级电容研究[D];华东师范大学;2010年
6 孙刚伟;炭基超级电容器正负极不对称电容行为研究[D];华东理工大学;2012年
7 韩燕;多孔炭材料制备及电容性能研究[D];南开大学;2013年
8 樊桢;电化学电容器电极材料的制备及其电容性能研究[D];湖南大学;2008年
9 丛文博;聚苯胺及其复合材料电容性能研究[D];哈尔滨工程大学;2008年
10 苏凌浩;钴铝双氢氧化物层状材料的制备、表征及电容性能研究[D];南京航空航天大学;2009年
相关硕士学位论文 前10条
1 王晓慧;碳纳米管和石墨烯负载二氧化钌复合电容材料的绿色制备和性能研究[D];华南理工大学;2015年
2 翟晶;聚吡咯及其复合材料的制备与电容性能研究[D];西南交通大学;2015年
3 彭大春;碳/MnO_x三维复合纳米纤维的制备及其电容性能研究[D];兰州大学;2015年
4 朱健;MnO_2基及硫化物复合电容材料的制备与超级电容性能研究[D];南京大学;2016年
5 娄长影;Ir-Ce基氧化物涂层阳极电容性能研究[D];福州大学;2014年
6 郭凤娇;聚苯胺及其炭基复合物的制备和电容性能研究[D];新疆大学;2016年
7 段宇;NiCo_2S_4电极材料及其超电容性能[D];南京理工大学;2016年
8 王维宙;二维层状Ti_3C_2T_x材料的制备及其电容性能研究[D];哈尔滨工业大学;2016年
9 高佶;基于超级电容的WSN节点供电技术[D];东北石油大学;2016年
10 马驰;矿物前驱体中硫酸盐及单质硫对活性炭超电容行为的影响[D];扬州大学;2016年
,本文编号:2124981
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2124981.html