聚合物微凝胶模板法制备纳米碳结构电极材料及电化学性能研究
[Abstract]:Based on the electrochemical reaction of lithium intercalation, the kinetics of the electrode process depends on the migration rate of Li+ ions and electrons. People usually encapsulate nanomaterials with nanomaterials to realize the rapid migration of Li+ ions and electrons. However, the uniform coating of carbon nanoscale on each nanoparticle is a very difficult task. The electrode of the current lithium ion battery The process is generally used to film the metal (aluminum, copper) foil first and then dry. The spherical electrode material is beneficial to the smooth and uniform coating of the coating. Therefore, it is a very meaningful work to make the nanoparticles inlaid evenly in the porous carbon matrix to form a spherical electrode material with three-dimensional ionic electron mixed conduction. Microgel is a class of crosslinked polymer microspheres with three-dimensional mesh. The polar functional groups on the molecular chain can interact with metal ions and fall into the polymer microgels. If the transition metal ions are hydrolyzed, they will be in situ precipitated in a three-dimensional mesh hole to produce organic inorganic hybrid materials. The carbon nanostructure (nanoparticles embedded in carbon matrix) can be synthesized by atmosphere treatment, and.LiMn2O4 is one of the positive electrode materials of the commercial power lithium ion battery. It has the advantages of good performance, friendly environment and abundant reserves. However, because of the ginger Taylor effect and the dissolution of Mn2+ ions, the capacity attenuation is serious. At present, the main strategies to deal with the LiMn2O4 capacity attenuation are surface coating and morphology control. If LiMn2O4 can be evenly embedded in the porous carbon matrix, the direct contact area between the material and the electrolyte can be reduced to reduce the dissolution of the Mn2+ ions, and the volume change in the charge discharge process can be slowed down greatly. The electrochemical performance of LiMn2O4 is improved. Compared with the current commercial lithium ion battery positive material, the V2O5 based on the multi electron reaction is characterized by high specific capacity, and its theoretical capacity reaches 441 mAh g-1 (3 electron mole V2O5). However, its low ionic and electronic conductivity limits its rapid charge discharge capacity; moreover, it is in electrolysis. The solubility in the liquid leads to poor cycling performance. Carbon coating can improve the ratio and cycle performance of the material. Therefore, we have done the following research work.1.P (AM-co-AA) template synthesis, the selection of carbonization conditions, and the electrochemical properties of carbon microspheres. After KCl and SiO2 filling, the porous carbon microspheres were prepared by removing KCl and SiO2 after high temperature carbonization. The pore size of the carbon microspheres with KCl as filling material was below 2 nm and 3.7 nm, and the Kong Rong of the holes below 2 nm was 0.22 cm3 g-1, and the specific surface area was 420 M2 g-1; 3.7 of the pores of the pores were 0.13, and the carbon microspheres with the surface area of 136 The particle size is between 10-20 and 10-20 m, the specific surface area is 617 M2 g-1, the pore size of 3.8 nm and 7.8 nm is 0.05 cm3 g-1, and the specific surface area is 62.1 m2g-1; the 7.8 nm hole Kong Rong is 0.289 cm3, and the specific surface area is 118. The specific volume of O2 for the filler reached 159 F g-1 and 110 F g-1. compared with microporous KCl filling. The surface area utilization ratio of the graded porous activated carbon prepared by nano SiO2 was higher.2.P (AM-co-AA) template synthesis of LiMn2O4@C composite and electrochemical properties. The pH value of the variable system, Mn2+ ion in situ hydrolysis, filled in the three-dimensional mesh hole inside the polymer microgel, forming a hybrid Mn (OH) 2@P (AM-co-AA) precursor. Then, the precursor is treated by high temperature, and the synthesis of carbon nanocoated LiMn2O4 composite (LMO@C).LMO@C has a spherical appearance, the particle size range is 1~2 u m, and the LiMn2O4 nano microspheres are homogeneous. The results of.N2 adsorption test in porous carbon matrix show that the specific surface area of LMO@C is 24.9 M2 g-1, BJH pore size distribution is 3.67 and 6.46 nm. with LMO@C material as positive material, and lithium metal is used as negative material to assemble semi battery for constant current charge discharge test. The results show that the ratio of 0.1,1,5,10 and 20C (1C=148 mA) can be obtained. The specific capacity.LMO@C of 142137126107 and 91 mAh g-1 respectively at room temperature 1000 times 1C cycle, the capacity retention rate is 80%, 60 oC, 1C cycle 200 times, the capacity retention rate is 86%, exhibiting excellent electrochemical performance.3.PMMA template synthesis V2O5@C composite material and electrochemical performance research using a cheap PMMA microgel template synthesis The particle size of the porous V2O5@C microspheres is 10-30 mu m, which is composed of an average particle size of 200nm particles. The primary particles are composed of 30 nm particles of V2O5 nanoparticles in the carbon matrix. The BET specific surface area of the porous V2O5/C microspheres is 23.5 M2 g-1 and the BJH aperture is 3.8 nm. with the prepared porous V2O5/C microspheres as the positive material, lithium gold. The initial discharge capacity under 0.1,0.5,2,5 and 10C is 291263239192 and 166 mAh g-1. under 0.5,5 and 10C cycles for 300 times respectively. The capacity retention rate is 90%, 77% and 63%., respectively. The results show that the porous V2O5@C microspheres have excellent multiplier performance and cyclic performance. In conclusion, polymer microgels are not only available. In order to synthesize porous carbon microspheres directly, porous LiMn2O4@C and porous V2O5@C composites can be synthesized by the template. The prepared porous carbon and carbon nanostructure electrode materials have excellent electrochemical performance.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;O646.54
【相似文献】
相关期刊论文 前10条
1 ;新加坡合成纳米碳墙[J];建材工业信息;2002年02期
2 曹何芬;新加坡在世界上首次合成纳米碳墙[J];建设科技;2002年03期
3 刘春艳;金兆国;章文贡;;纳米碳/聚甲基丙烯酸甲酯复合材料的研究[J];高分子学报;2006年02期
4 蒲天游;纳米碳对酚醛树脂碳微结构的影响[J];现代科学仪器;2003年03期
5 ;精彩纷呈的纳米碳元件[J];中国科技信息;2003年10期
6 卫英慧;侯利锋;林丽霞;刘雯;许并社;市野濑英喜;;纳米碳洋葱的研究进展[J];兵器材料科学与工程;2007年06期
7 杜建平;赵瑞花;王皓;王社斌;陈津;李瑞丰;;中空纳米碳颗粒的制备方法及应用前景[J];山西化工;2010年02期
8 文国富;尹彩流;王秀飞;蒙洁丽;;不同反应物量对纳米碳球结构的影响[J];广西民族大学学报(自然科学版);2011年01期
9 杨晶;史立飞;王禹;罗文满;李庚英;熊光晶;;分散剂对纳米碳黑水泥砂浆性能的影响[J];新型建筑材料;2012年01期
10 马柯;崔晓钰;邓高飞;;纳米碳球涂料对散热器散热性能的影响[J];热科学与技术;2013年03期
相关会议论文 前10条
1 孔春才;孙少东;杨志懋;;水下电弧法制备纳米碳片[A];第七届中国功能材料及其应用学术会议论文集(第3分册)[C];2010年
2 薛靖华;韩敏芳;王增峰;;白云石制备纳米碳酸钙和纳米碳酸镁概述[A];第八届全国非金属矿加工利用技术交流会论文专辑[C];2004年
3 郭巍;安胜利;;纳米碳催化剂对铝碳耐火材料抗氧化性能的影响[A];第二届全国背散射电子衍射(EBSD)技术及其应用学术会议暨第六届全国材料科学与图像科技学术会议论文集[C];2007年
4 郁军;许并社;杨永珍;张艳;刘旭光;;热处理脱油沥青制备内包金属纳米碳洋葱[A];第九次全国热处理大会论文集(二)[C];2007年
5 陈名海;陈宏源;靳瑜;邢亚娟;田靖;勇振中;李清文;;功能纳米碳纸结构性能调制及其应用[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
6 吴翔;刘广安;孟国军;;纳米碳电学性能研究及其在电发热膜中的应用[A];2004年中国纳米技术应用研讨会论文集[C];2004年
7 程若川;;纳米碳示踪在甲状腺手术中的应用[A];2014第六届全国甲状腺肿瘤学术大会论文集[C];2014年
8 李红霞;李晓明;杨泽垠;陈旭珍;陈坤;;甲状腺手术中应用纳米碳的益处[A];2014第六届全国甲状腺肿瘤学术大会论文集[C];2014年
9 胡良全;张炜;卢嘉德;;纳米碳增强碳/酚醛材料的微观结构研究[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
10 魏先文;徐静;宋小杰;;纳米碳管基复合材料的合成及性能研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前8条
1 杨彦飞 王晓霞;潞城建成全国最大纳米碳生产示范基地[N];山西日报;2012年
2 李斌 王晓霞;潞城建成纳米碳生产示范基地[N];长治日报;2012年
3 本报记者 原腊苗;用高科技开辟化肥全新领域[N];长治日报;2011年
4 ;纳米碳防腐导电涂料项目通过鉴定[N];中国高新技术产业导报;2005年
5 邵建人;纳米碳防腐导电涂料问世[N];中国化工报;2003年
6 通讯员 黄敬华 熊晶晶;襄樊东一公司纳米碳液通过鉴定[N];科技日报;2002年
7 记者 张海霞;加大推广研发力度把企业做强做大[N];长治日报;2012年
8 本报记者 闫婷婷;晟龙公司碳光玻璃引领行业发展潮流[N];长治日报;2013年
相关博士学位论文 前4条
1 邓建辉;荧光纳米碳点的电化学制备及其在生化分析中的应用[D];湖南师范大学;2015年
2 徐海涛;微纳米碳铁复合材料的制备与表征[D];中国科学院研究生院(理化技术研究所);2009年
3 李军章;纳米碳酸盐的制备及其化学反应行为的研究[D];河北工业大学;2013年
4 荣常如;聚芳醚/纳米碳复合材料的制备及性能研究[D];吉林大学;2010年
相关硕士学位论文 前10条
1 付凯;术中不同方法保护甲状旁腺的比较及临床意义[D];河北医科大学;2015年
2 张维国;稠环芳烃分子结构对其碳化产物结构的影响[D];北京化工大学;2015年
3 蒋合林;纳米碳/金属氧化(氢氧化)物复合材料的制备及其储能性能研究[D];北京化工大学;2015年
4 郑笑晨;基于纳米碳点复合材料化学修饰电极的制备及应用[D];延安大学;2015年
5 韩晓光;不同尿素添加纳米碳对大豆生长、氮素吸收及产量的影响[D];东北农业大学;2015年
6 张红来;聚合物微凝胶模板法制备纳米碳结构电极材料及电化学性能研究[D];湘潭大学;2015年
7 淳林;纳米碳在甲状腺微小乳头状癌手术中的应用[D];重庆医科大学;2014年
8 王蕾;利用基团相互作用合成石墨化纳米碳及碳基复合体材料[D];黑龙江大学;2010年
9 孔永昌;纳米碳黑复合材料的机敏性研究及其应用[D];汕头大学;2009年
10 范丽丽;氮素添加纳米碳对盐碱地水稻生长及生理生态特性影响[D];吉林农业大学;2012年
,本文编号:2138605
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2138605.html