当前位置:主页 > 科技论文 > 材料论文 >

稀土掺杂硅酸盐电子俘获型材料及其发光性能的研究

发布时间:2018-07-26 19:36
【摘要】:电子俘获型材料(Electron trapping materials)具有存储的特性,并且材料被长波波长的光激励时,可以辐射出短波波长的光,因此它在光学领域的另外一个名称为光激励发光材料。光激励发光材料因其独特的性质,其在红外探测、红外光转换、光存储及X射线成像等诸多方面有其广泛的应用前景。目前,可以商业化光激励材料主要是碱土金属硫化物系列,这种材料的光激励发光初始激发亮度强度高,并且光存储量大等诸多优点。但是,硫化物的本身的致命缺陷就是热稳定差。同时,我们知道硫化物的分解,将会产生有毒害的物质,可以对自然环境造成严重的污染。因此,寻找一种化学性质稳定,并且对环境污染少的光激励材料已经成为当前的光激励材料研究的重点。从所周知,硅酸盐体系具有较好的化学稳定性,并且耐高温、抗腐蚀等优点,是目前被广泛的用作稀土发光材料的基质材料。其中,基质材料RSrSiO4:Eu2+(R=Sr/Li2)是一类传统的LED (light emitting diodes)用的荧光粉,本论文以RSrSiO4:Eu2+(R=Sr/Li2)为研究对象,通过掺入另一种共激活剂的方式引入陷阱以提高其光激励发光性能。主要的研究成果如下:1)在基质材料β-SrSiO4:Eu2+中,通过La3+离子掺杂有效的提高了样品长余辉发光性能与光激励发光性能。样品的长余辉时间从几分钟增长到五十多分钟,同时其光激励初始强度、光激励光存储量等性能都有不同程度的提高。其原因是由于掺杂La3+离子的样品本征存在的氧空位更加稳定,因此其俘获电子的能力得到很大的提高,这些增加的陷阱可以很大程度的提高材料的光激励发光性能。2)在Li2SrSi04:Eu2+材料中,我们通过掺入四种不同的稀土离子(La3+/Nd3+/Dy3+ /Tm3+),研究发现不同的稀土离子对基质材料内部的微观结构影响不同,通过比较发现La3+离子能有效的增强材料的不同温度范围的热释光强度,因此其对样品的光激励发光性能是有较大贡献。同时发现Nd3+/Dy3+离子对样品材料的长余辉发光性能是有贡献的,而对光激发光性能影响较小,因而可以忽略,其中Dy3+离子对样品的长余辉发光性能影响最大。而Tm3+离子可以有效的提高深陷阱区的热释光峰,不过在我们用近红外光激励时,不能使陷阱中的电子释放出来,因而Tm3+离子对光激励发光几乎没有贡献。3)系统的研究了不同浓度La3+离子掺杂下Li2Sr0.997SiO4: 0.003Eu2+光激励发光性能的变化。通过比较样品的光致发光和光激励发光光谱,说明样品的发光都来自同一个发光中心,即Eu2+离子4f65d1→4f7的跃迁。经研究我们发现,随着La3+离子浓度增加样品的光激励发光性能逐渐提升,当La3+的掺杂浓度为0.008时,基质材料的光激励发光初始强度和光激励光存储量性能均达到了最优。同时研究了Dy3+离子对材料Li2Sr0.997SiO4:0.003Eu2+的荧光发光、长余辉发光性能的影响。通过实验发现,Dy3+离子的引入在一定程度上使得材料的荧光发光强度有所降低,这是因为Dyr3+的引入使得材料本征存在的氧空位更加稳定,增强了其俘获载流子的能力,因此,在光致发光过程中,这些陷阱将会俘获部分载流子造成基质材料发光强度的降低。同时我们发现材料的长余辉性能随着Dy3+离子的引入有所增强。
[Abstract]:Electron trapping materials has the characteristics of storage, and when the material is stimulated by long wave wavelengths, it can radiate the light of the short wave wavelength. Therefore, the other name in the optical field is the light excited luminescent material. The light excitation luminescent material is detected in infrared and infrared light conversion because of its unique properties. There are extensive applications in optical storage and X ray imaging. At present, commercialized light excitation materials are mainly alkaline earth metal sulfide series. The light excitation luminescence intensity of this material is high, and the amount of light storage is large. However, the fatal defect of the sulphide itself is the thermal stability. It is known that the decomposition of sulfides will produce toxic substances and can cause serious pollution to the natural environment. Therefore, looking for a light excitation material with stable chemical properties and less pollution to the environment has become the focus of current research on light excitation materials. It is well known that the silicate system has good chemical stability. With the advantages of high temperature resistance and corrosion resistance, it is widely used as a matrix material for rare earth luminescent materials. The matrix material RSrSiO4:Eu2+ (R=Sr/Li2) is a kind of traditional LED (light emitting diodes) phosphor. This paper is based on RSrSiO4:Eu2+ (R=Sr/Li2) as the research object and introduced by adding another Co activator. The main research results are as follows: 1) in the matrix material beta -SrSiO4:Eu2+, the long afterglow and light excitation properties of the sample are improved effectively by doping La3+ ions. The long afterglow time of the sample increases from a few minutes to more than 50 minutes, and the light excitation intensity and light excitation are also stimulated. The performance of the stored reserves has been improved in varying degrees. The reason is that the oxygen vacancies in the samples of the doped La3+ ions are more stable, so the ability to capture electrons is greatly improved. These increased traps can greatly improve the light excitation performance of the material.2) in the Li2SrSi04:Eu2+ material. Over the addition of four different rare earth ions (La3+/Nd3+/Dy3+ /Tm3+), it is found that different rare earth ions have different effects on the microstructure of the matrix materials. By comparison, it is found that La3+ ions can effectively enhance the thermoluminescence intensity of the materials at different temperature ranges, so it has a great contribution to the photoluminescence properties of the samples. It is found that the Nd3+/Dy3+ ions contribute to the long afterglow luminescence properties of the sample materials, but have little effect on the luminescence properties, and can be ignored, in which the Dy3+ ions have the greatest influence on the long afterglow luminescence properties of the samples, and the Tm3+ ions can effectively improve the thermal Shi Guangfeng in the deep trap region, but when we are excited by near infrared light, The electrons in the trap can not be released, so the Tm3+ ions have little contribution to the light excited luminescence. The system has studied the changes in the luminescence properties of the Li2Sr0.997SiO4: 0.003Eu2+ light stimulated by different concentrations of La3+ ions. By comparing the photoluminescence of the samples and the light excitation luminescence spectra, the luminescence of the samples comes from the same one. The luminescence center, that is, the transition of the Eu2+ ion 4f65d1 to 4F7. We have found that the luminescent properties of the samples increase gradually with the increase of the concentration of La3+ ions. When the doping concentration of La3+ is 0.008, the initial light excitation intensity and the optical storage performance of the matrix material have reached the best performance. At the same time, the Dy3+ ion pair is studied. The effect of fluorescent luminescence of Li2Sr0.997SiO4:0.003Eu2+ on the properties of long afterglow luminescence. It is found through experiments that the introduction of Dy3+ ions reduces the fluorescence intensity of the material to some extent. This is because the introduction of Dyr3+ makes the oxygen vacancies in the material more stable and the ability to capture the carrier. Therefore, the ability of the carrier to capture the carrier is enhanced. In the photoluminescence process, these traps will capture part of the carrier to reduce the luminescence intensity of the matrix material. We also find that the long afterglow properties of the material are enhanced with the introduction of Dy3+ ions.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB34;TQ422

【参考文献】

相关期刊论文 前9条

1 臧竞存;祁阳;刘燕行;;固体白光照明和稀土发光材料[J];材料导报;2006年07期

2 杨志勇;罗澜;陈玮;;稀土掺杂固体发光材料的光谱分析[J];光学学报;2007年04期

3 陈述春,戴凤妹;电子俘获材料的光学性质及光存储机制研究[J];光学学报;1995年06期

4 姜岭,常程康,毛大立;长余辉发光材料的研究进展[J];无机材料学报;2004年02期

5 陈述春,,戴凤妹;CaS:Ce的红外激励发光机制[J];无机材料学报;1995年03期

6 肖林久,孙彦彬,邱关明,陈永杰,代少俊;纳米稀土发光材料的研究进展[J];稀土;2002年04期

7 李洁,张哲夫;稀土发光材料研究与发展方向[J];稀有金属与硬质合金;2002年02期

8 陈湘南;蓄光颜料及其开发动向[J];中国涂料;2000年04期

9 张迈生,臧李纳;微波场作用下类球形亚超细CaS:Sm~(3+)的快速合成及其发光特性[J];稀有金属;2000年06期



本文编号:2147075

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2147075.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户78c1e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com