当前位置:主页 > 科技论文 > 材料论文 >

氢化碳纳米材料的合成及其性质的研究

发布时间:2018-07-28 19:26
【摘要】:氢化碳纳米材料具有优异的机械、电学和光学等性质,广泛的应用于摩擦学、电极材料、储氢材料、超级电容和传感器等领域。已有研究表明,氢化碳纳米材料中,其形貌、结构和氢化程度等参数对其性质有决定性的影响,因此,探索简单有效的制备方法,以及实现对氢化碳纳米材料的形貌、结构和氢化程度等重要参数的调控,一直是该领域人们努力的方向,具有重要的实际意义和应用价值。基于课题组最近发展的高温高压溶剂热方法,本论文针对上述科学问题展开了研究。研究中以三氯乙烷、溴苯作为碳源,研究了不同碳源、反应温度等实验参数对制备碳纳米结构的影响。成功制备出了不同氢化程度的氢化碳纳米球(Hydrogenated Carbon Nanospheres, HCNSs)和纳米石墨结构,并对样品的光学、电化学性质进行了系统研究,得到了以下结果: 1.三氯乙烷与钾在100-150oC温度区间内反应能够生成HCNSs,HCNSs的氢化程度与反应温度有关,温度越高,氢化程度越低。HCNSs的尺寸也随温度的变化而变化,较高的反应温度下会生成较大的碳纳米球。100oC下合成的HCNSs,其平均直径为150nm,而在150oC下,HCNSs的平均直径为300nm。HCNSs具有洋葱状类石墨结构,石墨片层沿着碳球的曲面以波浪状排列;氢化导致洋葱状结构的结晶性较低,并且存在较多的缺陷。 2. HCNSs用于锂离子电池负极材料时,100oC碳球的可逆循环容量达到了820mAh g-1,是石墨理论容量(372mAh g-1)的2倍多,优于150oC碳球的450mAh g-1。两者都表现出很高的循环稳定性。HCNSs的电化学性能与其独特的形貌、结构以及氢化程度密切相关。较高的氢化程度、较小的尺寸和较低的结晶性是100oC碳球具有更优异电化学性能的主要原因。 3.碳基材料的铁磁行为是近年来的研究热点。对HCNSs的室温磁性测试表明,HCNSs在室温下表现出铁磁特征,饱和磁化强度为3*10-3emu/g,矫顽力约为100G。HCNSs的铁磁行为可能是多种因素综合的结果。波浪状排列的石墨片层所导致的负高斯曲率以及较高的缺陷浓度可能是样品磁性的主要原因。 4.利用溴苯和二溴苯在溶剂热条件下与钾反应,生成了两种分子尺寸大小不同的氢化碳纳米材料。对样品的荧光测试表明,由于分子尺寸的差异,,从而表现出不同的荧光强度。分子中含碳量较少的样品,其荧光性较强。 这些实验结果为氢化碳纳米结构碳纳米结构的可控制备、性质以及形成机制提供了重要实验和理论基础,也为制备高性能的锂电池负极材料提供了一条可行途径。
[Abstract]:Hydrogenated carbon nanomaterials have excellent mechanical, electrical and optical properties, and are widely used in tribology, electrode materials, hydrogen storage materials, super capacitors and sensors. Previous studies have shown that the morphology, structure and degree of hydrogenation of hydrogenated carbon nanomaterials have a decisive effect on their properties. Therefore, simple and effective preparation methods and realization of morphology of hydrogenated carbon nanomaterials have been explored. The regulation of important parameters, such as structure and hydrogenation degree, has always been the direction of people's efforts in this field, and has important practical significance and application value. Based on the recent development of high temperature and high pressure solvothermal methods, this paper focuses on the above scientific problems. The effects of different carbon sources and reaction temperature on the preparation of carbon nanostructures were studied using trichloroethane and bromobenzene as carbon sources. The structures of hydrogenated carbon nanospheres (Hydrogenated Carbon Nanospheres, HCNSs) and graphite with different hydrogenation degrees were successfully prepared. The optical and electrochemical properties of the samples were systematically studied. The following results were obtained: 1. The hydrogenation degree of HCNSs can be related to the reaction temperature. The higher the temperature, the lower the hydrogenation degree. The size of HCNSs changes with the change of temperature. At higher reaction temperature, larger carbon nanospheres. 100oC were formed, the average diameter of HCNSs was 150nm, while the average diameter of HCNSs under 150oC was 300nm.HCNSs with an onion like graphite structure. The graphite lamellae was arranged in waves along the surface of the carbon spheres. Hydrogenation leads to lower crystallinity of onion-like structure and more defects. 2. 2. The reversible cycle capacity of the 100oC carbon sphere of HCNSs used in the cathode material of lithium ion battery is more than 2 times that of the graphite theoretical capacity (372mAh g -1), which is better than that of the 450mAh g 1 of the 150oC carbon sphere. The electrochemical properties of HCNSs are closely related to their unique morphology, structure and hydrogenation degree. Higher hydrogenation degree, smaller size and lower crystallinity are the main reasons for the better electrochemical properties of 100oC carbon spheres. Ferromagnetic behavior of carbon-based materials is a hot topic in recent years. The magnetic properties of HCNSs at room temperature show ferromagnetic characteristics. The saturation magnetization is 310-3 emu / g, and the coercivity of 100G.HCNSs is probably the result of a combination of many factors. The negative Gao Si curvature and high defect concentration caused by wavy graphite laminates may be the main reasons for the magnetic properties of the samples. 4. Two kinds of hydrogenated carbon nanomaterials with different molecular sizes were prepared by the reaction of bromobenzene and dibromobenzene with potassium under solvothermal conditions. The fluorescence measurements of the samples show different fluorescence intensity due to the difference of molecular size. The fluorescence of the sample with less carbon in the molecule is stronger. These results provide an important experimental and theoretical basis for the controllable preparation, properties and formation mechanism of hydrogenated carbon nanostructures, and also provide a feasible way for the preparation of high performance cathode materials for lithium batteries.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1

【共引文献】

相关期刊论文 前10条

1 姜昭;;以碳球为模板的核壳型结构的制备与表征[J];化工技术与开发;2013年08期

2 郑浩;高健;王少飞;李泓;;锂电池基础科学问题(Ⅵ)——离子在固体中的输运[J];储能科学与技术;2013年06期

3 王力臻;张文静;刘玉军;高海丽;;石墨形状搭配对锂离子电池负极性能的影响[J];电池;2013年05期

4 郑晓雨;苏方远;杨全红;康飞宇;;石墨烯在锂系二次电池中的应用:进展与展望[J];功能材料;2013年19期

5 党昱;吴京凤;何云华;白波;;酵母基多孔炭微球的热裂解制备及其吸附性能研究[J];材料导报;2013年14期

6 高磊;廖奕;张小华;陈金华;;聚苯胺纳米刺/掺氮空心碳球复合材料的制备及电容性能[J];高等学校化学学报;2013年12期

7 曾祥云;杨万里;杨娇;高美珍;;单分散碳球的制备及其表征[J];材料导报;2014年02期

8 王建平;田文怀;吴宁宁;;锂离子电池硅基负极材料的研究进展[J];电源技术;2014年01期

9 黄澍;王玮;王康丽;蒋凯;程时杰;;石墨烯在化学储能中的研究进展[J];储能科学与技术;2014年02期

10 邢冠楠;刘云芳;田艳红;段红英;迟伟东;;MnO_2/碳球复合材料的制备及其电化学性能的研究[J];北京化工大学学报(自然科学版);2014年02期

相关会议论文 前2条

1 王婧毅;张燕;叶云;梅毅;廉培超;;石墨烯基纳米复合材料用作锂离子电池负极的研究进展[A];全国石墨烯材料技术发展与应用交流研讨会论文集[C];2015年

2 刘万龙;肖作兵;胡静;;模板法制备纳米二氧化硅空心球的研究进展[A];第九届中国香料香精学术研讨会论文集[C];2012年

相关博士学位论文 前10条

1 李成均;含钛类锂电池负极材料的合成及其电化学性能的研究[D];华东理工大学;2013年

2 李娜;Li_4Ti_5O_(12)及其复合材料的制备及锂离子电池性能研究[D];中国科学技术大学;2013年

3 付小刚;石墨烯基氧还原催化剂的制备及其电催化性能研究[D];兰州大学;2013年

4 廉锁原;无机材料的乙醇溶剂热合成及应用[D];苏州大学;2013年

5 魏颖;功能性离子液体/离子液体复合物的合成、性质及在超级电容器中的应用[D];苏州大学;2013年

6 SANGARE Moussa;用于锂离子电池负电极的硅基复合材料研究[D];华中师范大学;2013年

7 张念椿;纳米微晶纤维素/金属/电介质杂化材料的制备与性能研究[D];华南理工大学;2013年

8 张叶臻;新型石墨纸和石墨烯在微生物燃料电池中的应用研究[D];华南理工大学;2013年

9 马聪聪;缺陷石墨烯在气敏传感器和锂离子电池中的应用[D];北京化工大学;2013年

10 胡爱平;纳米Fe_3O_4/石墨烯电极材料制备及电化学性能研究[D];湖南大学;2013年

相关硕士学位论文 前10条

1 蔡宏敏;SnO_2、SnO_2/C微纳米中空球制备、吸附及电化学性能[D];大连理工大学;2013年

2 唐盛贺;溶胶—凝胶法制备锂离子电池负极材料Li_4Ti_5O_(12)及其改性研究[D];广东工业大学;2013年

3 崔飞;基于功能化石墨烯构建电化学传感器及免疫传感器[D];山东大学;2013年

4 闫曼曼;石墨烯纳米片的非基板化学合成及机理研究[D];北京化工大学;2013年

5 李茜茜;TiO_x修饰碳纳米管载Pt催化剂的制备及其电催化性能研究[D];北京化工大学;2013年

6 仇迎;SiO_2微球的制备及其在相变微胶囊中的应用研究[D];西南交通大学;2013年

7 王媛媛;模板法合成介孔碳材料的研究[D];河北科技大学;2013年

8 毛超超;钨酸铋和二氧化铈微纳米材料的液相合成、表征及性能研究[D];西北大学;2013年

9 刘刚;铁族纳米材料的制备及性质研究[D];安徽大学;2013年

10 李永记;磁性纳米材料去除水中有毒污染物的应用研究[D];西南大学;2013年



本文编号:2151342

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2151342.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1e3b7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com