当前位置:主页 > 科技论文 > 材料论文 >

复合型高分子光稳定剂的合成及在剑麻基复合材料中的应用

发布时间:2018-08-06 09:03
【摘要】:高分子材料在户外使用过程中,长期经受太阳光照射容易发生光降解反应,使材料的各项性能逐渐降低甚至失效,失去使用价值。木塑复合材料具有耐用、寿命长,比塑料硬度高,比木材尺寸稳定性好等一系列优点,随着木塑复合材料的户外应用范围不断扩大,它对紫外光的耐受力越来越受到关注。为了延长材料的使用寿命,在制备材料的过程中添加光稳定剂是一种行之有效的方法。一般低分子光稳定剂在热加工时易发生热分解挥发,使用过程中也容易发生迁移,高分子光稳定剂可以克服低分子光稳定剂易分解与易迁移等缺陷,能更加有效地延长材料的使用寿命。本文采用催化酯化法,将2,4-二羟基二苯甲酮(UV0)、2(2,4-二羟基苯基)2H-苯并三唑(UVP)、聚乙二醇单甲醚(mPEG2000)与丙烯酰氯反应得到可聚合型单体2-羟基-4-丙烯酸酯基二苯甲酮(HABP)、2(2-羟基-4-丙烯酸酯基苯基)2H-苯并三唑(HAPBT)和聚乙二醇单甲醚丙烯酸酯(EGA);将正十八醇(SA)与丙烯酸反应得到可聚合型单体十八醇丙烯酸酯(OA);采用催化酯交换法,将2,2,6,6-四甲基哌啶醇(TMP)与甲基丙烯酸甲酯反应得到可聚合型单体2,2,6,6-四甲基-4-甲基丙烯酸酯基哌啶醇(MTMP);采用催化酯化法,将mPEG2000、TMP和马来酸酐(MAH)反应制得TMP-MF-mPEG2000。通过红外光谱(FT-IR)、核磁氢谱(1H-NMR)和紫外光谱(UV-Vis)表征产物结构,证实了产物的分子结构正确。以habp、mtmp、ega、oa、tmp-mf-mpeg2000以及苯乙烯(st)六种单体为原料,偶氮二异丁腈为引发剂,通过溶液共聚合成了四种含有二苯甲酮结构的复合型高分子光稳定剂p(habp-co-mtmp-co-oa-co-ega)、p(habp-co-mtmp-co-oa)、p(habp-co-mtmp-co-ega)、p(tmp-mf-mpeg-co-habp-co-st);另外以hapbt、mtmp、ega、oa为原料,偶氮二异丁腈为引发剂,溶液共聚合成了含有苯并三唑结构的复合型高分子型光稳定剂p(hapbt-co-mtmp-co-oa-co-ega)、p(hapbt-co-mtmp-co-oa)和p(hapbt-co-mtmp-co-ega)。通过1h-nmr、ft-ir、uv-vis、热重分析(tg)等测试手段,对合成的高分子光稳定剂的结构进行了表征确定,并研究了其热分解性能。将上述合成的高分子光稳定剂中的6种分别应用于pvc、剑麻纤维/pvc、剑麻纤维/pp、剑麻纤维/pe高分子材料中,考察紫外光光稳定效果。同时将低分子光稳定剂uv-0、uv-p、tmp以同等比例分别添加到pvc、剑麻纤维/pvc、剑麻纤维/pp、剑麻纤维/pe中,进行对比研究,按照gbt1040.4-2006国际标准进行人工加速光老化试验,通过扫描电镜(sem)、拉伸性能测试、衰减全反射红外(atr-ir)、接触角测试、水萃取实验、热压迁移性能实验和差示扫描量热分析(dsc)研究了材料在光老化作用下发生破坏的规律。结果表明,高分子化的光稳定剂在添加量(按有效成分计)与低分子光稳定剂相同的条件下,效果明显比低分子光稳定剂更好。热压迁移性能测试结果表明,我们所合成的高分子光稳定剂比低分子光稳定剂有较好的耐迁移性能;热失重数据表明高分子光稳定剂有较高的热分解温度,可以明显改善低分子光稳定剂热分解温度低等不足,其中P(HAPBT-co-MTMP-co-OA-co-EGA)的热分解温度最高,可达到365℃。本文所合成的几种高分子型光稳定剂,综合各项测试结果,表明共聚物中含有EGA结构的紫外光光稳定效果要优于含有OA结构的,而四元共聚的产物的紫外光光稳定效果比三元共聚产物都要好。本文对复合型高分子光稳定剂的制备及应用进行了有益的探索,为塑料光稳定剂的研究与应用提供了一定的参考价值。
[Abstract]:During the outdoor use of polymer materials, the long-term exposure to the sun light is easy to take place in the photodegradation reaction. The properties of the materials are gradually reduced, even invalidation and loss of use value. The wood plastic composite material has a series of advantages, such as durable, long life, higher hardness than plastic, better than wood size stability, and with wood plastic composite materials households. In order to prolong the life of the material, it is an effective method to add light stabilizer in the process of preparing materials. The general low molecular light stabilizer is prone to thermal decomposition and volatilization in the process of hot processing, and it is easy to migrate and high marks in the process of use. In this paper, 2,4- two hydroxy two benzophenone (UV0), 2 (2,4- two hydroxyphenyl) 2H- benzo and three azole (UVP), polyglycol monomethyl ether (mPEG2000) and acroleyl chloride can be polymerized by catalytic esterification. Type monomers 2- hydroxyl -4- acrylate based two benzophenone (HABP), 2 (2- hydroxy -4- acrylate based phenyl) 2H- benzo three azole (HAPBT) and polyethylene glycol monomethyl ether acrylate (EGA); polymerizable monomer eighteen alcohol acrolein (OA) was obtained by reaction of eighteen alcohol (SA) with acrylic acid; 2,2,6,6- four methylpiperidine (TMP) was used in catalytic transesterification. Polymerizable monomer 2,2,6,6- four methyl -4- methacrylate base piperidine (MTMP) was obtained from methyl methacrylate, and the product structure was characterized by the reaction of mPEG2000, TMP and maleic anhydride (MAH) with mPEG2000, TMP and maleic anhydride (MAH) by catalytic esterification, and the product was characterized by nuclear magnetic hydrogen spectrum (1H-NMR) and UV spectrum (UV-Vis), and the product was confirmed. The six monomers of habp, MTMP, EGA, OA, tmp-mf-mpeg2000 and styrene (st) are used as raw materials and azo two isobutadionitrile as initiator, and four compound polymer light stabilizers, P (habp-co-mtmp-co-oa-co-ega) containing two benzophenone structures, P (habp-co-mtmp-co-oa), P (habp-co-mtmp-co-ega), are synthesized by solution copolymerization. Mf-mpeg-co-habp-co-st); in addition, with hapbt, MTMP, EGA, OA as raw materials, azo two Ding Jing as initiator, a composite polymer light stabilizer containing benzo and three azole, P (hapbt-co-mtmp-co-oa-co-ega), P (hapbt-co-mtmp-co-oa) and P (hapbt-co-mtmp-co-ega), is synthesized by solution copolymerization. The structure of the synthesized polymer light stabilizer was characterized and its thermal decomposition performance was studied. 6 kinds of polymer light stabilizers were applied to PVC, sisal fiber /pvc, sisal fiber /pp, and sisal fiber /pe polymer to observe UV light stabilization and low molecular light stability. UV-0, UV-P, TMP were added to PVC, sisal fiber /pvc, sisal fiber /pp, sisal fiber /pe, and the artificial accelerated photoaging test was carried out according to gbt1040.4-2006 international standard, through the scanning electron microscope (SEM), tensile properties test, attenuated total reflection infrared (ATR-IR), contact angle test, water extraction experiment, hot pressing. Mobility test and differential scanning calorimetry (DSC) study the law of material damage under photoaging. The results show that high molecular light stabilizers are better than low molecular light stabilizers in the same conditions as low molecular light stabilizers. It is clear that the polymer light stabilizer has better transport resistance than low molecular light stabilizer. Thermal weight loss data shows that high molecular light stabilizer has high thermal decomposition temperature and can obviously improve low molecular light stabilizer, low thermal decomposition temperature, and P (HAPBT-co-MTMP-co-OA-co-EGA) has the highest thermal decomposition temperature. Several high molecular light stabilizers synthesized in this paper have been synthesized in this paper. The results show that the UV light stabilization effect of EGA structure in the copolymer is better than that of the OA structure, while the UV light stabilization effect of the product of the four element copolymerization is better than that of the three element copolymers. The preparation and application have made some beneficial explorations, providing some reference value for the research and application of plastic light stabilizers.
【学位授予单位】:广西师范学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33;TQ314.245.2

【相似文献】

相关期刊论文 前10条

1 蔡宏国;新型光稳定剂开发成功[J];精细化工中间体;2001年02期

2 蔡宏国;新型光稳定剂系列[J];塑料;2001年04期

3 吕咏梅;我国光稳定剂生产现状与发展趋势[J];化工新型材料;2002年05期

4 张怀柱;张丽丽;杜明亮;潘曰霞;;光稳定剂的工业应用技术进展[J];炼油与化工;2012年01期

5 潘江庆;;受阻胺光稳定剂的稳定化机理[J];老化通讯;1980年01期

6 张德泽;;两种高效光稳定剂的制备方法[J];化工新型材料;1987年05期

7 丁著明;;塑料光稳定剂的现状及发展动向[J];化学工业与工程;1990年04期

8 王庆华;;光稳定剂的研究动态及发展趋势[J];现代塑料加工应用;1993年01期

9 王克智;N-取代烷氧基受阻胺光稳定剂及其应用[J];合成树脂及塑料;1994年01期

10 张泽朋;受阻胺类光稳定剂的现状及发展趋势[J];精细石油化工;1998年02期

相关会议论文 前6条

1 瞿勇;林衍华;胡云光;;光稳定剂市场及开发新趋势[A];2005塑料助剂生产与应用技术信息交流会论文集[C];2005年

2 田江波;;我国光稳定剂市场现状[A];2005塑料助剂生产与应用技术信息交流会论文集[C];2005年

3 赵义;淡宜;;高分子型光稳定剂的合成及应用研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年

4 李燕云;尹振晏;马洪君;;光稳定剂Tinuvin 622 LD中间体的合成[A];中国化工学会2003年石油化工学术年会论文集[C];2003年

5 张文;苟小锋;花成文;张良;姚永峰;;自由基型受阻胺类光稳定剂的合成与性能[A];中国化学会第29届学术年会摘要集——第07分会:有机化学[C];2014年

6 李培基;王瑛;;红外光谱鉴定聚丙烯中受阻胺光稳定剂[A];全国第五届分子光谱学术报告会文集[C];1988年

相关重要报纸文章 前5条

1 刘功塑;光稳定剂成为增长最快的塑料助剂[N];中国化工报;2003年

2 孟如光;哌啶酮:与光稳定剂同行[N];中国化工报;2003年

3 ;光稳定剂发展需求增大[N];山东科技报;2002年

4 ;受阻胺光稳定剂研发受重视[N];中国化工报;2003年

5 ;2005年荣获国家、省部级科技奖励成果[N];中国化工报;2007年

相关博士学位论文 前2条

1 邓义;受阻胺类光稳定剂的设计、合成及表征[D];天津大学;2008年

2 董传明;受阻胺光稳定剂的设计、合成及表征[D];天津大学;2005年

相关硕士学位论文 前10条

1 相瑞;多功能光稳定剂的合成与性能研究[D];陕西科技大学;2015年

2 孙凉冰;受阻胺类光稳定剂耐侯改性研究[D];上海交通大学;2014年

3 韦德麟;复合型高分子光稳定剂的合成及在剑麻基复合材料中的应用[D];广西师范学院;2015年

4 张宇;含受阻胺结构的三嗪型光稳定剂的合成及性能[D];大连理工大学;2011年

5 姜雪;水溶性大分子光稳定剂的合成及应用[D];大连理工大学;2011年

6 舒雪桂;受阻胺光稳定剂的设计、合成及表征[D];天津大学;2005年

7 陈丽丽;两种光稳定剂的合成研究[D];南京理工大学;2007年

8 胡高飞;受阻胺氮氧自由基光稳定剂的研制[D];北京化工大学;2002年

9 姚强;受阻胺光稳定剂N,N'-双(4-氨基-2,2,6,6-四甲基哌啶基)-1,3-苯二甲酰胺的合成工艺研究[D];浙江大学;2015年

10 刘栋;多功能性受阻胺类光稳定剂的合成与性能[D];西北大学;2014年



本文编号:2167218

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2167218.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2123e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com