二氧化钛纳米带负载Au-Ag纳米催化剂的制备及其性能研究
[Abstract]:CO is one of the main pollutants in the atmosphere. The presence of CO in the air is very harmful to the environment and human health. In other industrial production, such as the use of fuel cells, CO will cause Pt electrode poisoning. The oxidation reaction of.CO, which affects the use efficiency, is an effective way to remove CO, and the oxidation of CO, especially the low temperature strip, is an effective way. The oxidation reaction under the component is of high practical value. It can be applied to indoor gas purification, gas mask, CO gas sensor and so on. And because the reaction of CO can be used as a probe reaction to explore the mechanism of catalytic reaction, the catalytic oxidation reaction of CO at low temperature has very important practical value and theoretical significance.A. U based nano catalysts are one of the most widely used catalysts in the catalytic oxidation of CO. The synergistic effect of bimetallic catalysts because of the addition of second metals makes it higher than the activity and stability of the single metal catalysts. Therefore, the synthesis and application of bimetallic catalysts have become one of the hotspots in the field of catalytic research. One dimension TiO2 The nanometers are synthesized by a simple hydrothermal method. There is no use of other macromolecular surfactants in the synthesis process. It has the characteristics of clean surface and smooth surface and uniform distribution of defects. It is an ideal catalyst carrier. And because of the one-dimensional fiber structure of TiO2 nanometers, it can be assembled into a whole porous structure nanoscale catalyst. In addition, the method of light deposition is a common method for the preparation of supported catalyst because of its simple operation, low cost and green non pollution. In this paper, Au and Au-Ag nanoparticles were loaded on the surface of TiO2 nanomaterials of one dimension nanomaterial, respectively, and the Au/TiO2-NB and Au-Ag/Ti were prepared by the method of light deposition and two step continuous photo deposition. O2-NB nanostructures were assembled into a holistic porous structure nanoscale catalyst for CO catalytic oxidation at low temperature. The specific contents of the study are as follows: 1. a double metal Au-Ag/TiO2-NB nano catalyst loaded with TiO2 nanoribbons was prepared by continuous two step photodeposition and assembled into a holistic porous nanoscale structure. SEM, TEM, The morphology, composition and structure of the nanoparticles are characterized by XRD, ICP. UV-Vis optical absorption and XPS, respectively. From the SEM image, it can be seen that the nanoscale paper presents a three dimensional cross penetration structure with a larger porosity and specific surface area. As can be seen from the TEM diagram, the metal nanoparticles are evenly distributed on the surface of the TiO2 nanoscale and its particles. The diameter is Shuangfeng distribution. The small particle size is about 2 nm., according to UV-Vis light absorption and XPS analysis, the metal particles in the bimetal Au-Ag/TiO2-NB nanostructures are the alloy structure of the surface enriched with silver oxide. The prepared bimetallic Au-Ag/TiO2-NB nanoscale catalyst should be used for the low temperature catalytic oxidation reaction of CO, respectively. The effect of pH value of precursor solution, pretreatment conditions and preparation methods on the activity of the catalyst during the preparation process showed that when the pH value of the precursor solution was 10, the activity of the single metal Au/TiO2-NB nano catalyst was the highest, which was due to the smaller Au particles prepared under this condition, and the Cl- residue was higher because of the high degree of hydrolysis of the AuCl4- ions. The catalyst has a higher catalytic activity. Secondly, the catalyst prepared by the two step photodeposition method, which deposited the Au before deposition of Ag, avoids the formation of AgCl in the preparation of Au and in situ replacement after the deposition of Ag first and has higher catalytic activity. Therefore, the effect of Au/Ag ratio and preconditioning conditions on catalytic activity was systematically investigated. When the proportion of Au/Ag was 1:0.8, the activity was highest after reduction of 400 degrees C. Due to the deactivation of Au based nano catalyst in the catalytic oxidation of CO at low temperature, the bimetallic Au-Ag/TiO was discussed by the method of inactivation rebirth reaction. The cause of 2-NB nano catalyst deactivation is that the activity of.3.Au nano catalyst is affected by the particle size and spatial distribution. When the small particle size distribution is small, the agglomeration phenomenon is easy to occur, which leads to the deactivation of the catalyst. Therefore, the preparation of nano catalyst with small particle size and uniform spatial distribution is very high. In this paper, the Au based nanoscale catalyst with controllable particle size and space distribution and high sintering resistance is prepared by systematic regulation of the light deposition time and precursor concentration in the process of photomivating. The current drive body is 1 mL 0.025 mol. L-1 HAuCl4 solution under 400 W xenon lamp, 10 s, and the particle size of catalyst nanoparticles For 2.5 nm, the CO can be completely converted under the reaction condition. The size of Au nanoparticles is only 1.4 nm when the current volume of the flooding solution is reduced to 0.1 mL. Although the load is low (0.056 wt.%), the catalytic oxidation reaction of CO still has good catalytic activity.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O643.36;TB383.1
【相似文献】
相关期刊论文 前10条
1 张莺;;纳米催化剂的制备和最新应用研究进展[J];山西大同大学学报(自然科学版);2008年04期
2 高昂;;纳米催化剂颗粒的热力学分析[J];才智;2010年19期
3 ;厦门大学研制成功甲醇燃料电池纳米催化剂[J];精细化工原料及中间体;2010年04期
4 高红,赵勇;纳米材料及纳米催化剂的制备[J];天津化工;2003年05期
5 吕玉光;如何用现代仪器表征纳米催化剂[J];现代仪器;2005年03期
6 李敏;崔\~;;纳米催化剂研究进展[J];材料导报;2006年S1期
7 ;稀土纳米催化剂将用于节能减排[J];无机盐工业;2008年03期
8 张忠模;;稀土纳米催化剂将实现产业化[J];功能材料信息;2008年02期
9 耀星;;稀土纳米催化剂应用通过鉴定[J];粉末冶金工业;2008年05期
10 郭祖鹏;郭莉;师存杰;焉海波;;磁性纳米催化剂的研究进展[J];精细化工中间体;2011年04期
相关会议论文 前10条
1 姜艳霞;张斌伟;廖洪刚;陈明晖;孙世刚;;金和铂纳米催化剂的控制合成及其电催化性能[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年
2 明军;赵凤玉;;超临界二氧化碳中纳米催化剂的形成过程及机理研究[A];第九届全国工业催化技术及应用年会论文集[C];2012年
3 陈蓉;韩杰;郭荣;;金/导电高分子蛋黄/蛋壳结构纳米催化剂的合成及催化性能研究[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第1分会:表面界面与纳米结构材料[C];2013年
4 鲁宋;王明贵;韩杰;郭荣;;磁性聚苯胺负载纳米催化剂的合成及性能研究[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第1分会:表面界面与纳米结构材料[C];2013年
5 张成明;崔新江;邓友全;石峰;;氯离子调控的高性能纳米催化剂可控制备研究[A];第十四届全国青年催化学术会议会议论文集[C];2013年
6 王杰;王帅;万颖;;限域纳米催化剂热稳定性的研究[A];中国化学会第29届学术年会摘要集——第34分会:纳米催化[C];2014年
7 周小春;Peng Chen;;单分子检测技术在纳米催化剂的大规模并行筛选中的应用研究[A];中国化学会第29届学术年会摘要集——第32分会:纳米表征与检测技术[C];2014年
8 陆安慧;;炭基纳米催化剂的设计合成[A];中国化学会第29届学术年会摘要集——第34分会:纳米催化[C];2014年
9 曹建亮;袁忠勇;;用于催化一氧化碳低温氧化的氧化铜基多孔纳米催化剂体系[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
10 胡守天;赵惠忠;李平和;李成香;汪厚植;;Ce-O-Co/ZrO_2纳米催化剂的结构及催化氧化CH_4性能的研究[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
相关重要报纸文章 前7条
1 江战;新型纳米催化剂研制成功[N];中国有色金属报;2002年
2 闫明星 王群 记者 姜雪松;纳米催化剂“水中取氢”[N];哈尔滨日报;2010年
3 林世雄邋本报记者 通讯员 李静;纳米催化剂合成的重大突破者[N];福建日报;2008年
4 丛林;纤维素水解技术取得新进展[N];中国化工报;2011年
5 记者 刘霞;新纳米催化剂能在可见光下快速分解水[N];科技日报;2013年
6 钟科;中科院三元催化转换器系统技术通过鉴定[N];中国有色金属报;2006年
7 特约记者 呼跃军;清华大学与包头联合研发稀土材料[N];中国化工报;2005年
相关博士学位论文 前10条
1 张东慧;金属—铁酸盐复合磁性纳米催化剂的制备及催化性能研究[D];吉林大学;2010年
2 刘鸿飞;磁性纳米催化剂的合成及其催化性能研究[D];北京化工大学;2013年
3 徐贻成;具有温控相分离功能的铑纳米催化剂及其应用[D];大连理工大学;2013年
4 滕飞;纳米催化剂的微乳法制备及其表征[D];中国科学院研究生院(大连化学物理研究所);2005年
5 唐林;负载型的金属纳米催化剂在醇参与的氧化反应中的应用[D];中国科学技术大学;2015年
6 陈日志;纳米催化无机膜集成技术的研究与应用[D];南京工业大学;2004年
7 曾艳;以含聚醚链季铵盐型离子液体为稳定剂的过渡金属纳米催化剂制备及应用[D];大连理工大学;2012年
8 田丹碧;负载型纳米催化剂KF/Al_2O_3的制备及其应用研究[D];南京工业大学;2004年
9 王晔;天然DNA负载的金属纳米催化剂:制备,,表征及其催化性能研究[D];中国科学技术大学;2011年
10 解雅玲;基于C(Ni)纳米催化剂的设计合成及其催化加氢性能[D];大连理工大学;2012年
相关硕士学位论文 前10条
1 邱凯;二氧化钛纳米带负载Au-Ag纳米催化剂的制备及其性能研究[D];山东大学;2015年
2 吴静谧;CO低温氧化高效Pd纳米催化剂的制备与其性能研究[D];浙江大学;2015年
3 刘佳;含聚醚链季铵盐型离子液体稳定的铑及钯/铑双金属纳米催化剂的制备及应用[D];大连理工大学;2011年
4 王军;新型化学贮氢材料分解制氢纳米催化剂的合成及性能研究[D];江南大学;2012年
5 潘洪;新型纳米催化剂的制备及其催化的酯和磷酸酯的水解反应[D];天津大学;2009年
6 王建新;纳米催化剂的制备和使用性能研究[D];吉林大学;2012年
7 王珊珊;催化还原脱硫用纳米催化剂的制备方法及其特性研究[D];华中科技大学;2009年
8 孙芳;银纳米催化剂的制备及其电催化性能研究[D];北京化工大学;2014年
9 许茜;新型低维纳米催化剂的高分辨电子显微表征[D];南京大学;2015年
10 朱晓航;磁性核壳纳米催化剂的制备及其在有机反应中的应用[D];兰州大学;2014年
本文编号:2168003
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2168003.html