当前位置:主页 > 科技论文 > 材料论文 >

碲纳米线的电输运性能研究

发布时间:2018-08-09 15:39
【摘要】:碲,是一种重要的半导体材料,其禁带宽度为0.34 ev。碲的化合物纳米材料是非常重要的半导体光电材料,具有很优异的物理和化学性质,在半导体纳米器件和生物医学领域有广阔的应用前景。本文选取碲纳米线为研究对象,研究碲纳米线的电输运性能和光电特性。本文的主要研究工作如下:1.本文采用水热法合成了具有分散性良好、纯度高、结晶性好的单根Te纳米线,直径约为80 nm-200 nm。利用XRD和SEM分析手段对合成的碲纳米线进行表征,结果表明XRD图显示的最强峰[101]是碲纳米线的生长方向。2.采用深紫外曝光接触式光刻技术和金属剥离技术,构筑了基于单根Te纳米线的“金属/Te纳米线/金属”型半导体纳米器件。3.在室温下,测试了Te纳米线半导体器件分别在空气和真空中的电输运性能,结果表明金属电极和碲纳米线具有良好的欧姆接触。通过分析Te纳米器件的场效应特性曲线,发现漏电流Ids随着栅压Vgs的下降而减小,表明Te纳米器件是一个典型的P型半导体。实验还发现,空穴载流子的迁移率达到了750 cm2v-1s-1。随着相对湿度的增加,吸附在碲纳米线的表面的水分子数目增加,因此碲纳米线表面被水吸附的电子数也会相应增加,引起纳米线的表面电势降低,吸引更多的空穴到表面层。此种现象也会导致碲纳米线本身的电导增加。4.在不同波长的光照射下,发现Te纳米线具有负光电导现象。光生电子会吸附在纳米线的表面,并与其内部的空穴载流子复合,导致碲纳米线内部的空穴载流子浓度降低,故碲纳米线内部的空穴浓度是影响碲纳米线电导的未来希望通过测试碲纳米线在真空中的时间响应图,进一步验证上述碲纳米线的负光电导产生的机理。通过进一步研究可控制备碲纳米线的方法,为以后制备CdTe、Ag2Te、Bi2Te3等功能材料提供一个理想的模板。
[Abstract]:Tellurium, an important semiconductor material, has a band gap of 0.34 ev. Tellurium compound nanomaterials are very important semiconductor optoelectronic materials with excellent physical and chemical properties and have a broad application prospect in semiconductor nanodevices and biomedical fields. In this paper, tellurium nanowires are selected to study the electrical transport and photoelectric properties of tellurium nanowires. The main research work of this paper is as follows: 1. In this paper, single Te nanowires with good dispersion, high purity and good crystallinity have been synthesized by hydrothermal method. The diameter of Te nanowires is about 80 nm-200 nm. The synthesized tellurium nanowires were characterized by XRD and SEM analysis. The results show that the strongest peak [101] in XRD diagram is the growth direction of tellurium nanowires. The metal / Te nanowire / metal semiconductor nanodevices based on single Te nanowires were fabricated by using deep ultraviolet exposure contact lithography and metal stripping technology. The electrical transport properties of Te nanowire semiconductor devices in air and vacuum have been measured at room temperature. The results show that the metal electrodes have good ohmic contact with tellurium nanowires. By analyzing the field effect curves of Te nanodevices, it is found that the leakage current (Ids) decreases with the decrease of gate voltage Vgs, which indicates that Te nanodevices are a typical P-type semiconductor. It is also found that the mobility of the hole carrier reaches 750 cm ~ 2 v-1s-1. With the increase of relative humidity, the number of water molecules adsorbed on the surface of tellurium nanowires increases, so the number of electrons adsorbed by water on the surface of tellurium nanowires will increase accordingly, resulting in the decrease of surface potential of nanowires and the attraction of more holes to the surface layer. This phenomenon also leads to an increase in conductance of the tellurium nanowires. It is found that Te nanowires have negative photoconductivity under different wavelengths of light irradiation. Photogenerated electrons are adsorbed on the surface of nanowires and compound with hole carriers in the nanowires, resulting in a decrease in the hole-carrier concentration in tellurium nanowires. Therefore, the hole concentration in tellurium nanowires is the future of the conductivity of tellurium nanowires. It is hoped that the mechanism of negative photoconductivity of tellurium nanowires can be further verified by testing the time response diagram of tellurium nanowires in vacuum. The method of controllable preparation of tellurium nanowires is further studied to provide an ideal template for the preparation of functional materials such as CdTeO Ag2TeOBi2Te3 in the future.
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O613.53;TB383.1

【相似文献】

相关期刊论文 前10条

1 白春礼;;纳米科技及其发展前景[J];群言;2001年04期

2 白春礼;纳米科技及其发展前景[J];安徽科技;2002年03期

3 白春礼;纳米科技及其发展前景[J];微纳电子技术;2002年01期

4 黄彪;纳米科技前景灿烂,应用开发任重道远[J];中国粉体技术;2002年01期

5 一东;;纳米产业化成了企业泥潭[J];新经济导刊;2003年Z2期

6 宋允萍;纳米科技[J];中学文科;2001年01期

7 李斌,沈路涛;纳米科技[J];焊接学报;2000年04期

8 齐东月;纳米 又一场新技术革命来临了[J];民族团结;2000年10期

9 徐滨士,欧忠文,马世宁;纳米表面工程基本问题及其进展[J];中国表面工程;2001年03期

10 白春礼;纳米科技及其发展前景[J];计算机自动测量与控制;2001年03期

相关会议论文 前10条

1 陈天虎;谢巧勤;;纳米矿物学[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年

2 马燕合;李克健;吴述尧;;加快建设我国纳米科技创新体系[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年

3 李正孝;煍岩;;漫娗纳米技圫和纳米材料的a捎煤蛌|展[A];第二届功能性纺织品及纳米技术应用研讨会论文集[C];2002年

4 伊阳;陶鑫;;纳米CaCO_3在塑料改性中的应用研究[A];PPTS2005塑料加工技术高峰论坛论文集[C];2005年

5 洪广言;;稀土产业与纳米科技[A];第九届中国稀土企业家联谊会会议论文集[C];2002年

6 惠飞;王栋民;;纳米水泥混凝土的研究进展[A];2008年中国水泥技术年会暨第十届全国水泥技术交流大会论文集[C];2008年

7 秦伯雄;陈峰;马卓然;;高压流体纳米磨及其应用[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年

8 王树林;李生娟;童正明;李来强;;振动纳米学进展[A];第七届全国颗粒制备与处理学术暨应用研讨会论文集[C];2004年

9 洪广言;贾积晓;于德才;孙锁良;李天民;王振华;;纳米级氧化镱的制备与表征[A];中国稀土学会第四届学术年会论文集[C];2000年

10 洪茂椿;;纳米催化在化石资源高效转化中的应用研究[A];中国化学会2008年中西部地区无机化学、化工学术交流会会议论文集[C];2008年

相关重要报纸文章 前10条

1 张立德(中国科学院固体物理研究所);纳米专家话纳米[N];中国高新技术产业导报;2002年

2 本报记者 赵晓展;纳米科技,,产业化序幕刚刚拉开[N];工人日报;2002年

3 宗合 晓丽;纳米科技成果产业化将带来巨大经济效益[N];消费日报;2004年

4 朱文龙;产学研联手助推纳米产业[N];文汇报;2006年

5 ;神奇的纳米科技[N];中国有色金属报;2006年

6 本报记者 李贽;纳米还没走出实验室[N];大众科技报;2001年

7 冯 薇;纳米护肤品没那么神[N];大众科技报;2005年

8 本报记者 彤云;打造纳米产业链条[N];中国高新技术产业导报;2001年

9 张芳;纳米护肤品其实没那么神[N];科技日报;2005年

10 赵展慧 张之豪;纳米世界有多神奇?[N];人民日报;2013年

相关博士学位论文 前10条

1 樊莉鑫;纳米电极体系界面结构及过程的理论与数值模拟研究[D];武汉大学;2014年

2 冯晓勇;高速重击条件下高锰钢表面纳米晶的制备及组织性能研究[D];燕山大学;2015年

3 黄权;B-C-N体系中新型超硬材料制备与性能研究[D];燕山大学;2015年

4 王东新;纳米钻石靶向载药体系的制备及其与细胞相互作用的研究[D];山西大学;2014年

5 张俊丽;低维磁性纳米结构的可控合成、微观表征及应用研究[D];兰州大学;2015年

6 于佳鑫;两种新型光学材料在显微生物成像与光谱检测中的应用探索[D];浙江大学;2015年

7 李志明;块体纳米晶钛的制备及组织演变与力学行为[D];上海交通大学;2014年

8 杨树瑚;缺陷对几种过渡族金属氧化物磁性的影响[D];南京大学;2012年

9 刘春静;锂离子电池锡基纳米负极材料制备及储锂性能[D];大连理工大学;2015年

10 谢伟丽;SiC纳米线三维结构的制备与生物相容性[D];哈尔滨工业大学;2014年

相关硕士学位论文 前10条

1 林诠彬;中药纳米化对中医药的影响[D];广州中医药大学;2010年

2 毛彩霞;纳米二氧化锰的安全性评价[D];华中师范大学;2008年

3 邓世琪;PbTi0_3及LiTi0_2纳米结构的水热合成及其光致发光和光催化性能研究[D];浙江大学;2015年

4 葛岩;YAG:Ce~(3+)纳米晶的制备及其发光性能的研究[D];上海师范大学;2015年

5 潘伟源;水热法合成的过渡金属化合物掺杂对Li-Mg-B-H储氢体系的改性研究[D];浙江大学;2015年

6 豆贝贝;纳米水泥熟料矿物的合成与性能研究[D];河北联合大学;2014年

7 郭步超;高氮奥氏体不锈钢机械纳米化表面层及其热稳定性研究[D];长春工业大学;2015年

8 王艳艳;纳米化/渗氮/渗硫层与润滑油添加剂的摩擦化学效应研究[D];中国地质大学(北京);2015年

9 周文敏;Cr_2WO_6、Ag_2CrO_4微/纳米晶的制备及性能研究[D];陕西科技大学;2015年

10 龚成章;纳米铝结构性质及Al/RNO_2界面作用的理论研究[D];南京理工大学;2015年



本文编号:2174551

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2174551.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户773da***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com