当前位置:主页 > 科技论文 > 材料论文 >

用于降低吸附床接触热阻的导热复合材料研究

发布时间:2018-08-27 12:51
【摘要】:面对如今严峻的能源问题和环境问题,将吸附式制冷技术作为蒸汽压缩制冷技术的补充和替代是一个良好的解决方案。近年来,国内外学者对吸附式制冷做了大量研究工作,为吸附式制冷的工程应用奠定了基础。关于吸附床强化传热传质也有大量的研究成果,但是目前为止,对于降低吸附床和吸附剂之间较大的接触热阻,从而进一步提高吸附床的换热能力还没有有效、易行的解决办法。本文研制了一种耐温高导热复合材料,可应用于吸附剂与吸附床之间,用来降低吸附剂与吸附床之间的接触热阻。具体内容如下:首先为评价导热复合材料的导热性能,搭建了基于稳态法的导热系数测试实验台。本文详细介绍了该实验台的工作原理,结构组成,测试步骤,并结合文献,采用304L不锈钢样品对测试实验台的精度进行了标定。结果显示实验台的最大误差为7.1%。之后从测试原理,计算模型和加工过程等方面分析了产生此误差的原因。然后以环氧树脂E-44为基体,二氨基二苯基甲烷(DDM)为固化剂,微米级A1203为导热填料制备了耐温高导热复合材料。随着导热填料用量的增大,复合材料的导热性能也随之增大。但是升高过程不是线性的,而是在导热网链形成之前处于缓慢上升状态,一旦导热网链形成导热性能迅速提高。关于填料粒径,本文选用了101μm和35μm的Al2O3粒子进行研究。实验结果表明,采用10μm粒子作导热填料的复合材料导热系数较高。采用Agari方程对实验结果进行拟合,从理论上解释了该现象产生的原因。将两种粒径粒子按不同比例混合可以获得比单独一种粒子都要高的导热能力,而且以1:1的比例混合两种粒子,获得的复合材料导热能力最好。为了改善填料与基体间的界面性能,将填料粒子用硅烷偶联剂KH-560处理。测试了经不同浓度偶联剂处理后的复合材料导热性能,当偶联剂KH-560的浓度为8%时,复合材料导热性能最好。由于经过偶联剂处理的填料粒子加入基体中之后,体系的粘度变大。为了降低体系粘度,提高填料粒子的分散性能,向体系中加入了一定浓度的稀释剂。加入稀释剂后可有效提高复合材料的导热能力,但是并不是越多越好,质量分数为40%时效果最好。由于影响复合材料导热性能的因素众多,为了找到合适的配比方案,同时研究各因素间的相互影响,本文制订了5因素5水平的正交实验表,对上述因素进行正交实验综合分析,并得出最佳实验配比方案。以此实验配比方案为基础,配制耐温高导热复合材料将其涂抹在模拟的吸附床和吸附剂之间,利用最小二乘法计算出涂抹复合材料后吸附床和吸附剂之间接触热阻的大小,并和文献中的接触热阻进行比较。结果显示使用本材料后,接触热阻至少可以降低52.6%。
[Abstract]:In the face of severe energy and environmental problems, it is a good solution to take adsorption refrigeration technology as the supplement and substitute of steam compression refrigeration technology. In recent years, scholars at home and abroad have done a lot of research on adsorption refrigeration, which lays a foundation for the engineering application of adsorption refrigeration. There have also been a lot of research results on enhanced heat and mass transfer in adsorption bed, but so far, it is not effective to reduce the contact thermal resistance between adsorption bed and adsorbent and further improve the heat transfer capacity of adsorption bed. An easy solution. In this paper, a high temperature and high thermal conductivity composite material has been developed, which can be used between adsorbent and adsorption bed to reduce the contact thermal resistance between adsorbent and adsorption bed. The main contents are as follows: firstly, in order to evaluate the thermal conductivity of the composites, a thermal conductivity test bench based on steady state method was set up. In this paper, the working principle, structure composition and test steps of the test bench are introduced in detail, and the precision of the test bench is calibrated by using 304L stainless steel sample. The results show that the maximum error is 7.1. Then, the causes of this error are analyzed from the aspects of test principle, calculation model and machining process. Then the high thermal conductivity composites were prepared with epoxy resin E-44 as matrix, diaminodiphenyl methane (DDM) as curing agent and micrometer A1203 as thermal conductive filler. The thermal conductivity of the composites increases with the increase of the filler content. However, the rising process is not linear, but is in a slowly rising state before the formation of the heat conduction network chain, and once the heat conduction network chain is formed, the thermal conductivity is improved rapidly. Regarding the particle size of filler, the Al2O3 particles of 101 渭 m and 35 渭 m were selected to study. The experimental results show that the thermal conductivity of composites with 10 渭 m particles as thermal conductive filler is higher. The experimental results were fitted by Agari equation, and the reason of the phenomenon was explained theoretically. The thermal conductivity of the composite is better than that of the single particle by mixing the two particles in different proportions, and when the two particles are mixed at 1:1, the thermal conductivity of the composite is the best. In order to improve the interfacial properties between filler and matrix, filler particles were treated with silane coupling agent KH-560. The thermal conductivity of the composite treated with different concentration of coupling agent was tested. When the concentration of coupling agent KH-560 was 8%, the thermal conductivity of the composite was the best. The viscosity of the system increases when the filler particles treated by coupling agent are added to the matrix. In order to reduce the viscosity of the system and improve the dispersion of filler particles, a certain concentration of diluent was added to the system. The addition of diluent can effectively improve the thermal conductivity of the composites, but not the more the better, the best effect is when the mass fraction is 40. Because there are many factors that affect the thermal conductivity of composite materials, in order to find out the appropriate proportion scheme and study the interaction among the factors, the orthogonal experiment table of 5 factors and 5 levels is developed. The above factors were analyzed comprehensively by orthogonal experiment, and the optimum experimental formula was obtained. On the basis of the experimental scheme, the thermal resistance between the adsorption bed and the adsorbent was calculated by least square method, and the thermal resistance between the adsorbent and the adsorption bed was calculated by using the least square method, and the thermal resistance between the adsorbent and the adsorbent was calculated by using the least square method. And compared with the contact thermal resistance in the literature. The results show that the contact thermal resistance can be reduced by 52.6%.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB332

【相似文献】

相关期刊论文 前10条

1 孙黎明;邓艳芝;凌祥;;吸附床传热性能的数值模拟[J];石油和化工设备;2009年09期

2 李海霞;闫静雯;;用导热理论确定制冷吸附床偏心距的数值模拟研究[J];河南理工大学学报(自然科学版);2010年02期

3 徐进;邓艳芝;钱金康;;吸附式制冷循环中肋板式吸附床的数值模拟[J];石油和化工设备;2010年09期

4 ;回转吸附床式除湿装置[J];化学世界;1983年03期

5 冯毅,谭盈科;吸附式制冷装置中吸附床传热传质的研究[J];化工学报;1991年03期

6 侯庆林;马连湘;;化学吸附式制冷吸附床的模拟研究与结构分析[J];青岛科技大学学报(自然科学版);2014年01期

7 张建;钱焕群;;天然气吸附床传热试验研究[J];油气储运;2008年07期

8 刘应书;郑新港;李永龄;张辉;刘文海;;变压吸附空分制氧体系轴向流吸附床浓度分布研究[J];低温与特气;2011年01期

9 夏良志;王金渠;桑凤亭;赵素琴;李永钊;耿自才;初荣清;顾胜雄;;COIL低温真空吸附床结构的改进[J];强激光与粒子束;2006年11期

10 陈焕新;魏莉;张绰;殷明;;壳管式吸附床传热特性及其强化传热研究[J];华中科技大学学报(自然科学版);2012年10期

相关会议论文 前8条

1 刘业凤;王如竹;;吸附式空气取水器的吸附床内传热传质分析[A];上海市制冷学会二○○三年学术年会论文集[C];2003年

2 魏莉;陈焕新;张威;董媛媛;张绰;殷明;;单元管长度对壳管式吸附床传热特性的影响[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年

3 钱焕群;徐大坤;朱义成;;天然气吸附床吸附过程的数值模拟[A];山东土木建筑学会建筑热能动力专业委员会第十二届学术交流大会论文集[C];2008年

4 高旭;徐敬玉;A.S.Maiga;王勤;陈光明;;一种用于吸附式制冷系统的新型流态化吸附床的初步实验研究[A];浙江制冷(2013年第01期总第102期)[C];2013年

5 张华俊;韩宝琦;陈旭;田伟明;郭连顺;孙国平;;双吸附器回热循环中吸附床温度场的分析[A];第九届全国冷水机组与热泵技术学术会议论文集[C];1999年

6 宋飞;杜维明;吴业正;晏刚;;CaCl_2-CH_3OH吸附式热泵吸附床特性与动态仿真[A];第十二届全国冷(热)水机组与热泵技术研讨会论文集[C];2005年

7 黄护林;王洋;;一种新型水冷式太阳能吸附制冷的实验系统[A];制冷空调新技术进展——第四届全国制冷空调新技术研讨会论文集[C];2006年

8 郑青榕;顾安忠;蔡振雄;廖海峰;郑超瑜;;活性炭吸附储氢罐充放气过程的试验研究[A];第七届全国氢能学术会议专辑[C];2006年

相关博士学位论文 前3条

1 孟祥睿;中温余热吸附制冷用复合吸附剂及吸附床研究[D];郑州大学;2009年

2 齐朝晖;化学吸附式制冷系统的数值模拟和实验研究[D];湖南大学;2002年

3 王凯;氯化钙/膨胀石墨混合吸附剂的吸附特性及其在双热管型吸附制冷系统中的应用[D];上海交通大学;2007年

相关硕士学位论文 前10条

1 候庆林;氯化钙—氨吸附式制冷吸附床的数值模拟与性能优化[D];青岛科技大学;2013年

2 熊国栋;用于降低吸附床接触热阻的导热复合材料研究[D];山东大学;2015年

3 谢军;固体吸附式制冷系统中新型针刺板吸附床的强化传热研究[D];郑州大学;2007年

4 孙天宝;太阳能吸附式制冷吸附床的数值模拟研究[D];北京工业大学;2010年

5 程东娜;固体吸附式制冷系统中吸附床传热过程的数值模拟研究[D];郑州大学;2006年

6 兰青;新型吸附床太阳能冰箱的实验研究[D];云南师范大学;2004年

7 董媛媛;重力式热管吸附床结构及传热特性研究[D];华中科技大学;2012年

8 李秋英;太阳能吸附式制冷吸附床的设计及数值模拟[D];江苏大学;2006年

9 张成军;固体吸附式制冷系统中吸附床传热性能研究[D];南京理工大学;2010年

10 谷杰然;热管式吸附床在船舶吸附式制冷中的应用研究[D];大连海事大学;2008年



本文编号:2207341

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2207341.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c29b1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com