当前位置:主页 > 科技论文 > 材料论文 >

聚乙二醇纳米金的制备及其在丙烯酰胺检测和吸附上的应用

发布时间:2018-09-18 12:23
【摘要】:本文以聚乙二醇单甲醚(PEG)为原料,制备了聚乙二醇单甲醚纳米金(PEG-纳米金),并将聚乙二醇巯基功能化后制备了巯基化聚乙二醇单甲醚纳米金(PEG-HS-纳米金),然后将两种纳米金分别用于有毒小分子丙烯酰胺的检测和吸附上。建立了一种基于聚乙二醇单甲醚稳定的纳米金可视化检测丙烯酰胺(AA)的新方法,并用透射电子显微镜(TEM)、紫外可见光光度计(UV)、激光粒度分析仪(DLS)对聚乙二醇纳米金进行测试分析。结果表明:该聚乙二醇纳米金核呈分散均匀的规则球体,且其平均粒径为19nm。颗粒整体(纳米金核和表面稳定剂)粒径集中分布在40 nm。浓度为0.004 mg/m L的丙烯酰胺能使聚乙二醇纳米金发生团聚,胶体由红色变成紫色,浓度在0.004mg/m L-0.032 mg/m L之间时,团聚程度随浓度的增加而增加,同时颗粒整体粒径依次增大到170 nm、250 nm、600 nm。相同条件下,N,N-二甲基丙烯酰胺(DMAA)不能使聚乙二醇纳米金发生团聚。因此,可用该方法简单、快速的实现丙烯酰胺选择性检测。将巯基化聚乙二醇纳米金用于丙烯酰胺吸附,研究了其吸附性能、吸附机理以及循环利用。氢核磁(1H-NMR)、高效液相色谱(HPLC)、紫外可见分光光谱(UV)、透射电子显微电镜(TEM)、激光粒度分析仪(DLS)等测试表明:该巯基化聚乙二醇纳米金在有机溶剂和水溶液中均能吸附丙烯酰胺,但不吸附N,N-二甲基丙烯酰胺,这种吸附来源于丙烯酰胺的氢原子与巯基化聚乙二醇的氧原子之间的氢键。二氯甲烷中每个巯基化聚乙二醇纳米金平均吸附25772个丙烯酰胺分子,水溶液中每个巯基化聚乙二醇纳米金平均吸附22420个丙烯酰胺分子,比二氯甲烷中少,这可能是水溶液中水分子使丙烯酰胺与聚乙二醇之间的氢键作用减弱。另外,该巯基化聚乙二醇纳米金前4次循环团聚较少,循环5次之后,团聚量超过50%,这可能是多次离心使纳米金产出团聚引起的。因此,该巯基化聚乙二醇纳米金可能成为新型可循环利用的有毒小分子吸附剂。
[Abstract]:In this paper, polyethylene glycol monomethyl ether (PEG) was used as raw material. Polyethylene glycol monomethyl ether gold (PEG- nanocrystalline gold) was prepared and PEG-HS- nanocrystalline gold (PEG-HS- nanocrystalline gold) was prepared by functionalization of polyethylene glycol sulfhydryl group. Then the two kinds of gold nanoparticles were used as toxic small molecule propene respectively. Determination and adsorption of amides. A new method for visual detection of acrylamide (AA) based on polyethylene glycol monomethyl ether stabilized nanocrystalline gold was developed, and the (UV), laser particle size analyzer (DLS) was used to test and analyze polyethylene glycol nanocrystalline gold with transmission electron microscope (TEM),) ultraviolet visible photometer (TEM),). The results show that the nucleation of polyethylene glycol nanocrystalline is a uniform regular sphere with an average particle size of 19 nm. The particle size of the whole particle (nanocrystalline gold core and surface stabilizer) is concentrated at 40 nm.. Acrylamide with concentration of 0.004 mg/m / L could agglomerate polyethylene glycol nanocrystalline gold, and the colloid changed from red to purple. When the concentration was between 0.004mg/m L-0.032 mg/m L, the agglomeration degree increased with the increase of concentration, and the particle size increased to 170 nm,250 nm,600 nm. in turn. Under the same conditions, N- dimethylacrylamide (DMAA) could not agglomerate polyethylene glycol nanocrystalline gold. Therefore, the method can be simple and rapid to achieve acrylamide selective detection. The adsorption properties, adsorption mechanism and recycling of acrylamide were studied by using sulfhydrated polyethylene glycol nanocrystalline gold to adsorb acrylamide. The results of hydrogen NMR (1H-NMR), (HPLC), ultraviolet spectrophotometry (HPLC), (UV), transmission electron microscopy (UV), electron microscopy (TEM), laser particle size analyzer (DLS) and so on show that the sulfated polyethylene glycol nanocrystalline gold can adsorb acrylamide in both organic solvent and aqueous solution. However, N- dimethylacrylamide is not adsorbed, which is derived from the hydrogen bond between the hydrogen atom of acrylamide and the oxygen atom of mercapto polyethylene glycol. In dichloromethane, an average of 25772 acrylamide molecules were adsorbed by each mercapto polyethylene glycol nanocrystalline gold, and 22420 acrylamide molecules per mercapto polyethylene glycol nano-gold adsorbed in aqueous solution, less than that in dichloromethane. It is possible that water molecules in aqueous solution weaken the hydrogen bond between acrylamide and polyethylene glycol. In addition, the first four times of cyclic agglomeration of the mercapto PEG-nanocrystalline gold was less, and after five cycles, the agglomeration amount was more than 50, which may be caused by the agglomeration of nanocrystalline gold produced by centrifugation for many times. Therefore, the sulfhydryl polyethylene glycol nanocrystalline gold may be a new type of toxic small molecule adsorbent which can be recycled.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;O647.3

【参考文献】

相关期刊论文 前8条

1 刘世伟;华凯峰;苏怡;吕翔宇;李翠玲;王玉江;;空心纳米金在甲醛气体传感器中的应用研究[J];分析化学;2009年07期

2 付春晓;蛋白的聚乙二醇修饰及其在生物医学领域的应用[J];国外医学.药学分册;2001年02期

3 熊杰;钱蜀;谢永洪;谢振伟;李海霞;;高效液相色谱-串联质谱法同时测定水中丙烯酰胺、苯胺和联苯胺[J];分析化学;2014年01期

4 唐林生;张国政;李小丽;翟晓欧;;新型聚乙二醇接枝聚羧酸减水剂的制备[J];混凝土;2010年02期

5 周宇;朱圣陶;刘仁平;;气相色谱法测定食品中丙烯酰胺[J];食品科学;2006年03期

6 陈玲,陈皓;固相萃取-高效液相色谱联用分析水中的痕量丙烯酰胺[J];色谱;2003年05期

7 Bermard Idson;王萌;;护肤化妆品用聚合物[J];日用化学品科学;1990年02期

8 茅力;陆晓梅;杨叶;陈景衡;叶洋;傅明慧;潘斐;;高效液相色谱法检测淀粉类食品中丙烯酰胺的方法研究[J];中国卫生检验杂志;2009年04期



本文编号:2247908

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2247908.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d8895***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com