基于高频电磁—超声混合悬浮的无容器装置设计及实验研究
[Abstract]:With the rapid development of material science, the requirement of material properties is raised, that is, more new materials need to be developed. Because of its unique characteristics, containerless technology has significant advantages in the development of new materials. Based on the previous research and the characteristics of various containerless technologies, this paper presents a method of non-vessel melting and solidification based on the hybrid suspension of high frequency electromagnetic and ultrasonic standing wave. Firstly, the principle, research status and application of electromagnetic levitation technology and ultrasonic standing wave suspension technology, as well as the usual containerless solidification methods after electromaglev melting are summarized. The electronic control platform is designed to realize the coincidence of the suspension position of the experimental samples in the ultrasonic standing wave levitation and the electric magnetic levitation and to adjust the reflector in the mixed experiment. According to the experimental purpose, the combination of radiator and reflector of different concave spherical radius is simulated and analyzed by ANSYS software, and the combination mode which can provide larger sound pressure value is obtained. Based on the suspension force theory of spherical samples in multi-turn coils, four kinds of induction coils are simulated by MATLAB. The relationship between the structure parameters of various types of coils and the levitation force of the samples and the differences between the different types of coils are obtained. The simulation results show that with the increase of the initial turn radius, the number of stable coil turns, the half cone angle of suspension coil and the half cone angle of stabilized coil, the levitation force of four types of coils decreases nonlinear with the plane spacing. The levitation force of the four types of coils increases nonlinearly with the increase of the coil spacing and the number of hoisting coils, and the suspension force provided by cylindrical coils is generally greater than that provided by spiral coils. In addition, the experimental results are in agreement with the simulation results. The electromagnetic eddy current field of induction coil is analyzed by MAXWELL, and the calculated electromagnetic eddy current field is used as the heat source of ANSYS transient temperature field analysis. The simulation results show that the maximum temperature of the suspension sample decreases with the increase of the number of stable coil turns, the half cone angle of the suspension coil and the half cone angle of the stabilized coil, and the maximum temperature of the suspended sample increases with the increase of the suspension position. That is, the temperature at the bottom of the coil is higher than that at other locations, and with the increase of the sample radius, the maximum temperature of the suspended sample increases first and then decreases. Among them, the initial turn radius, plane spacing, turn spacing and the number of turns of suspension coil have little effect on the maximum temperature of the sample. In addition, the experimental results are in agreement with the simulation results. The relationship between the structure parameters and sample size of the induction coil and the stability of the experimental sample is studied experimentally: the stability of the experimental sample with smaller diameter is better than that of the experimental sample. In a certain taper range, the stability of suspension coil is better as the half cone angle is larger and the stability of type 4 is the best. The experimental equipment based on high frequency electromagnetic and ultrasonic standing wave mixed suspension is built. The mixing device mainly includes ultrasonic standing wave suspension device, high frequency electric magnetic levitation device, circulating water device, argon atmosphere device and electronic control adjusting platform. Suspension melting and cooling solidification experiments were carried out on tin samples with low melting point and aluminum samples with high melting point in air and argon atmosphere respectively.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB30
【相似文献】
相关期刊论文 前10条
1 李锦桥;中频感应线圈的改进[J];机械工人(热加工);1992年04期
2 胡达刚;感应线圈在化学实验中的应用[J];化学教育;2003年06期
3 陈宝琳;感应线圈的绝缘处理[J];电炉;1974年03期
4 李亚欣;张国滨;;热送直轧过程中感应线圈壁厚对补热效率的影响[J];河北理工学院学报;2006年01期
5 丁茹;林凌;韩晓斌;李刚;;微型感应线圈车辆检测器的稳定性研究[J];天津工业大学学报;2006年04期
6 Fabien Marquis;宋钦;;感应技术—哪些是新的![J];机械工人;2006年04期
7 孔祥群;;工频电炉小改进[J];机械工人;1984年08期
8 法林;感应线圈系系数k和介质单元环儿何因子g的一种近似推导方法[J];测井技术;1985年06期
9 ;电感耦合高频等离子发光分光分析(ICP)[J];化学世界;1982年11期
10 李凤层;雷彬;李治源;;单级感应线圈发射器参数分析与动态特性计算[J];兵器材料科学与工程;2010年04期
相关会议论文 前3条
1 任国兵;;感应线圈因数的理论推导[A];电波科学学报[C];2011年
2 张国安;朱忠尼;;异步感应线圈发射器内部磁场分析[A];2011中国电工技术学会学术年会论文集[C];2011年
3 张涛;国伟;苏子舟;张洪海;;同步感应线圈炮磁耦合仿真研究[A];2011中国电工技术学会学术年会论文集[C];2011年
相关重要报纸文章 前5条
1 河南 冯长军;利用感应线圈完成的静电实验[N];电子报;2004年
2 ;数位输入原理简介[N];计算机世界;2002年
3 庞绍甜;闹钟的晶体管驱动电路[N];北京电子报;2000年
4 四川 陈伟鑫编译;金属探测棒[N];电子报;2004年
5 ;自动超大口径电磁感应铝箔封口机[N];中国包装报;2006年
相关硕士学位论文 前8条
1 王义斌;高强钢矩形管感应强化组织与性能控制研究[D];哈尔滨工业大学;2015年
2 李道波;航空感应线圈位姿数据采集系统研发[D];北华航天工业学院;2017年
3 张莎莎;基于高频电磁—超声混合悬浮的无容器装置设计及实验研究[D];吉林大学;2017年
4 郑杰;感应线圈对磁浮系统性能影响研究[D];国防科学技术大学;2006年
5 李维;感应电磁抹拭技术研究[D];浙江大学;2014年
6 李双;地磁感应线圈在弹体运动参数测量中的应用研究[D];南京理工大学;2012年
7 李雷;电源频率及感应线圈结构对电磁悬浮熔炼的影响研究[D];河北大学;2010年
8 张贝贝;基于视频与感应线圈技术融合的高速公路交通事件检测系统研究[D];长安大学;2012年
,本文编号:2263687
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2263687.html