材料结构对磁性的影响
[Abstract]:In recent years, with the development and utilization of nanomaterials, more and more attention has been paid to the relationship between material structure and physical properties. For example, in order to improve the magnetoelectric coupling of ferromagnetic materials, a large number of structural integration has been carried out, especially the study of multiphase composite multi-iron materials has become a research hotspot in this field. It is found that the magnetoelectric coupling of multiphase composite polyferric materials is obviously enhanced, but the physical mechanism is not clear. In addition, in order to find out the physical mechanism of ferromagnetism in non-magnetic metal oxides at room temperature, various attempts have been made. It is found that its structure has an important influence on the ferromagnetism of this kind of materials, but the physical mechanism is still controversial, and there is no uniform conclusion. In order to solve the above problems, the multiphase composite multiferric materials and ordered porous ZrO_2 thin films have been prepared, and the relationship between the structure and magnetic properties has been studied in detail. The results are as follows: by changing the content of ferromagnetic phase CoFe_2O_4 (CFO) with spinel structure, a series of multiphase composite materials Bi_ _ (0.85) La_ _ (0.15) FeO_3 (BLFO) and CFO were prepared by solid state reaction. The structure and composition of the materials were characterized by cold field emission scanning electron microscopy (FE-SEM), X ray diffractometer (XRD) and X-ray energy scattering (EDS). It was found that there was no chemical reaction between BLFO and CFO during the preparation process. The grain size of BLFO hardly changes with the doping of ferromagnetic phase, and the physical properties of BLFO-CFO two-phase composites are tested by physical property tester (PPMS) and ferroelectric analyzer. The saturation magnetization and the remanent polarization strength of the samples are increased with the increase of the CFO doping content of the ferromagnetic phase, and the magnetization of the materials is calculated theoretically on the basis of the assumption that the magnetization comes entirely from the ferromagnetic phase CFO. Compared with the experimental results, it is found that the theoretical value is much smaller than the experimental value, which proves that there is a strong magnetoelectric coupling effect in the BLFO-CFO two-phase composite, because the leakage current of the composite is large, Therefore, the magnetoelectric coupling coefficient can not be measured experimentally, so the above results also provide a new proof method for the existence of magnetoelectric coupling effect in this kind of composite sample. The ordered porous ZrO_2 films were prepared by reactive DC magnetron sputtering on the substrate of ordered porous anodic alumina template (PAA). The structure and composition of the films were characterized by XRD,FE-SEM and EDS. It was found that with the increase of sputtering time, the pore size and thickness of ZrO_2 thin films became smaller and larger. The physical properties of Zr O 2 thin films were measured by means of PPMS and UV-Vis spectrophotometer (UV-Vis). It is found that ZrO_2 thin films exhibit obvious ferromagnetism at room temperature, and the magnetic properties of ZrO_2 thin films are larger when the applied magnetic field is perpendicular to the surface of the films than that of the films parallel to the surface of the films, which indicates that the ZrO_2 thin films have magnetic anisotropy. The maximum saturation magnetization of 119emu/cm3 is obtained on the thin films with the largest pore size, and the orientation of the pore is easy to be magnetized, and the maximum saturation magnetization is obtained on the thin films with the largest pore size. The annealing treatment and PL measurements show that the magnetic properties of ZrO_2 films are mainly dependent on the single electron oxygen vacancies in the films, and the magnetic changes can be realized by controlling the oxygen vacancies. This also indicates that ZrO_2 thin films are expected to be applied to spin electronic devices.
【学位授予单位】:河北师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB303
【相似文献】
相关期刊论文 前10条
1 李旭升;;国外岩矿石磁性研究的发展概况[J];国外地质勘探技术;1983年09期
2 吴昌衡,庄育智;稀土-过渡金属化合物结构和磁性研究简介[J];物理;1990年02期
3 李爽;;拆拼搭合,感受神奇的分子磁性世界——访北京大学化学与分子工程学院院长高松教授[J];中国科技奖励;2007年10期
4 刘承宪;李前懋;姜丽霞;;矿石磁性研究[J];有色金属(选矿部分);1990年06期
5 刘建中;郑保才;陈子瑜;杨正;;锶铁氧体微粉的磁性研究[J];磁记录材料;1989年02期
6 王寅生;陈龙武;周乃扶;;草酸在α-Fe_2O_3上吸附的磁性研究[J];化学研究与应用;1992年01期
7 沈德凤;智多;;纳米二氧化钛光催化和磁性研究进展[J];黑龙江医药科学;2011年05期
8 姜坤良;刘先松;王超;徐娟娟;金大利;高尚;;低损耗铁粉芯的制备与磁性研究[J];功能材料;2012年16期
9 杜庆立,赵子强,韩朝晖;Co-Ag嵌埋团簇薄膜的磁性研究[J];功能材料;2000年05期
10 庄育智,张玉昌;稀土金属间化合物的磁性能[J];中国稀土学报;1983年02期
相关会议论文 前10条
1 段纯刚;;电控磁性研究的最新进展[A];2011中国材料研讨会论文摘要集[C];2011年
2 高恩庆;王艳琴;李修兵;;混金属型单链磁体的磁性调控初探[A];第六届全国物理无机化学会议论文摘要集[C];2012年
3 刘建强;侯万国;颜世申;代由勇;;Co-Fe-LDH的制备及其煅烧产物的磁性研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
4 李钰梅;邢光建;王怡;武光明;;室温铁磁性Zn1-xCoxO薄膜的制备及磁性研究[A];第十四届全国等离子体科学技术会议暨第五届中国电推进技术学术研讨会会议摘要集[C];2009年
5 孟昭莎;童明良;高松;;系列稀土-镉异金属簇合物的合成、结构与磁性研究[A];中国化学会第29届学术年会摘要集——第06分会:稀土材料化学及应用[C];2014年
6 王玲玲;胡望宇;舒小林;盛霞;张邦维;;Fe-Sn-B合金镀层的磁性[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
7 邢宏珠;苏钽;朱恩博;杨玮婷;赵朗;唐金魁;于吉红;徐如人;;18-元环超大孔亚磷酸镍的离子热合成与磁性表征[A];第十五届全国分子筛学术大会论文集[C];2009年
8 马旭村;H.L.Meyerheim;J.Barthel;J.Kirschner;;磁纳米条纹的有机图案模板法制备、微结构和磁性研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
9 崔光磊;顾民;于尧;;氢气氛下紫外光辐照C_(60)的磁性研究[A];第十五届全国波谱学学术会议论文摘要集[C];2008年
10 赵蓓;李慧军;贾艳媛;侯红卫;;包含不同螺旋的1D-3D Mn配合物的设计、合成及磁性研究[A];中国化学会2013年中西部地区无机化学化工学术研讨会论文集[C];2013年
相关重要报纸文章 前1条
1 本报记者 王皓;为探索分子磁性奥秘不断前行[N];北京日报;2011年
相关博士学位论文 前10条
1 郭东林;缺陷诱导纳米氧化物(ABO_x)室温磁性和铋硫化合物各向异性热电性能研究[D];重庆大学;2015年
2 黄晓明;合金团簇结构和磁性的第一性原理研究[D];大连理工大学;2015年
3 文剑锋;石墨基碳材料及其氮掺杂体系的磁性研究[D];南京大学;2012年
4 高乔;多钼钒氧簇配合物的合成、晶体结构和性质研究[D];东北师范大学;2015年
5 曹为民;电结晶制纳米金属多层膜及其磁性的研究[D];上海大学;2009年
6 马继;具有自旋玻璃行为的氧化铁的制备及其磁性能研究[D];青岛科技大学;2013年
7 高茜;ZnO基稀磁半导体磁性机制的实验研究与数值模拟[D];东北大学;2011年
8 郑富;铁钴基合金薄膜的静态与动态磁性研究[D];兰州大学;2012年
9 仝玉章;氰根及含氮多元环配体构筑的单离子磁体及磁性分子的合成、结构及性质研究[D];南开大学;2014年
10 王心华;异质结构纳米材料的磁性调控研究[D];兰州大学;2014年
相关硕士学位论文 前10条
1 张晓敏;双重分子磁开关的分子设计与磁性研究[D];东华理工大学;2015年
2 李锐;易面型(Ce_(1-x)Sm_x)_2Fe_(17)N_(3-δ)及Y_2Fe_(14-x)Co_xB微粉复合材料的微波磁性研究[D];兰州大学;2015年
3 张青民;新型磁性Cu-BTC催化剂的制备及其催化性能研究[D];北京化工大学;2015年
4 刘欢欢;亚毫米磁性单元制备及其高频磁性能的研究[D];电子科技大学;2014年
5 何彦兵;非磁性离子掺杂MnZn铁氧体的磁性研究[D];广西师范大学;2015年
6 朱雁;稀土镝配合物的合成、结构和磁性研究[D];东华理工大学;2014年
7 毛海欣;磁性碳材料的制备、改性及其吸附抗生素的特性[D];太原理工大学;2016年
8 张晓静;新型低维多功能分子磁性材料分子设计、合成及磁性研究[D];东华理工大学;2016年
9 王昱天;外延生长铁单晶薄膜的高频磁性[D];兰州大学;2016年
10 张超;电场调控的铁磁与铁电异质结的磁性研究[D];兰州大学;2016年
,本文编号:2277433
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2277433.html