当前位置:主页 > 科技论文 > 材料论文 >

碳-芳纶混编三维编织复合材料拉伸性能实验研究

发布时间:2018-10-26 09:08
【摘要】:本课题设计并制备了碳纤维为轴纱,芳纶纤维为编织纱和芳纶纤维为轴纱,碳纤维为编织纱的混编三维五向和三维六向复合材料。采用数字图像相关(DIC)技术记录试样在轴向拉伸过程中的表面全场应变,通过相近纤维体积含量下碳纤维三维编织复合材料及芳纶纤维三维编织复合材料的对比实验,分析了混编方式和编织结构对碳-芳纶混编三维编织复合材料拉伸性能和损伤机理的影响。试样轴向拉伸实验结果表明,同种编织结构下,芳纶纤维和碳纤维分别为轴纱的混编三维五向和六向编织复合材料的拉伸强度和模量分别较芳纶纤维三维五向和六向编织复合材料的高-2.71%,10.14%,21.21%,28.86%和36.77%,62.68%,30.28%,74.26%。芳纶纤维和碳纤维分别为轴纱的混编三维五向和六向编织复合材料的断裂伸长率分别较碳纤维三维五向和六向编织复合材料的高34.38%,11.96%,51.09%和2.19%。同种混编方式下,碳纤维和芳纶纤维三维五向编织复合材料,芳纶纤维和碳纤维分别为轴纱的三维五向编织复合材料较对应三维六向编织复合材料的拉伸强度分别高出58.72%,59.29%,27.84%和36.15%;拉伸模量分别高出47.43%,36.28%,43.07%和27.23%;断裂伸长率则无明显趋势变化。泊松比受编织结构影响较大,受混编结构影响较小。同种混编方式下,碳纤维,芳纶纤维,芳纶纤维为轴纱和碳纤维为轴纱的三维五向编织复合材料的泊松比分别较对应三维六向编织复合材料的高293.75%,162.50%,228.57%和344.44%。各组典型试样的时间-纵向应变曲线均接近线性。全场纵向云图表明,试样应变分布整体呈均匀性,局部呈周期性。同时,试样的面内轴向应变分布受混编方式和编织结构的影响,同种编织结构下,编织纱为碳纤维的试样其应变似"点阵"分布状态,编织纱为芳纶纤维的试样其应变似"波浪线"分布状态。同种混编方式下,三维五向编织复合材料的表面应变沿表层编织纱交织点均匀分散分布,而三维六向编织复合材料的表面应变则整体上沿六向纱分布。试样拉伸断口和纵向剖面形貌观测结果表明,同种编织结构下,芳纶纤维的加入降低了断口的整齐度,改善了试样断裂过程中基体的开裂与脱落现象,但同时降低了整体纤维与基体的浸润程度。同种混编方式下,三维五向编织复合材料的断口为倾斜锯齿状,其内部损伤程度随距断口的距离增大而降低,损伤传播距离较大,而三维六向编织复合材料的断口为平齐断口,其内部损伤集中在断口附近,损伤传播距离较小。
[Abstract]:In this paper, three dimensional five and six dimensional composites with carbon fiber as axial yarn, aramid fiber as woven yarn and aramid fiber as axial yarn and carbon fiber as woven yarn are designed and fabricated. The full-field strain of the specimen during axial tension was recorded by digital image correlation (DIC) technique. The comparative experiments of three-dimensional braided carbon fiber composites and aramid fiber three-dimensional braided composites with similar fiber volume content were carried out. The effects of blending mode and braiding structure on tensile properties and damage mechanism of carbon-aramid three-dimensional braided composites were analyzed. The results of axial tensile test show that under the same braided structure, The tensile strength and modulus of the three-dimensional five-direction and six-direction braided composites with aramid fiber and carbon fiber respectively as axial yarns are higher than that of the aramid fiber three-dimensional five-direction and six-direction braided composites, respectively, and the tensile strength and modulus of the composites are higher than that of the aramid fiber three-dimensional five-direction and six-direction braided composites. 28.86 percent and 36.77 and 62.68, about 30.28and 74.26. The elongation at break of the blended three dimensional five and six direction braided composites of aramid fiber and carbon fiber respectively is 34.38% and 11.96% higher than that of the three dimensional five direction and six direction braided composites, respectively, and is 2.19% higher than that of the three dimensional five direction and six direction braided composites. Carbon fiber and aramid fiber three-dimensional five-direction braided composites in the same blending mode, The tensile strength of the three-dimensional five-direction braided composite with aramid fiber and carbon fiber as axial yarn is 58.72% and 36.15% higher than that of the corresponding three-dimensional six-direction braided composite, respectively. The tensile modulus was 47.43% and 27.23% higher than that of 36.28%, respectively, but the elongation at break had no obvious trend. Poisson's ratio is influenced greatly by braided structure and less by mixed structure. In the same blending mode, the Poisson's ratio of three dimensional five-direction braided composites with carbon fiber, aramid fiber as axial yarn and carbon fiber as axial yarn is 293.7575 and 162.50 higher than that of three-dimensional six-direction braided composite, respectively. 228.57% and 344.44%. The time-longitudinal strain curves of each group of typical samples were almost linear. The full-field longitudinal cloud image shows that the strain distribution of the sample is uniform and the local strain distribution is periodic. At the same time, the in-plane axial strain distribution of the sample is affected by the mixing mode and the braiding structure. Under the same braiding structure, the strain distribution of the sample with the same braided yarn is like "lattice". The strain of the woven yarn as aramid fiber is similar to the "wave line" distribution. In the same blending mode, the surface strain of the three-dimensional five-direction braided composite is distributed uniformly along the interwoven point of the surface braided yarn, while the surface strain of the three-dimensional six-direction braided composite is distributed along the hexagonal yarn as a whole. The results of tensile fracture and longitudinal profile observation show that the addition of aramid fiber reduces the uniformity of fracture surface and improves the cracking and shedding of the matrix during the fracture process of the specimen under the same braided structure. At the same time, the wetting degree of the whole fiber and matrix was reduced. In the same blending mode, the fracture surface of the three-dimensional five-direction braided composite is inclined serrated, and the internal damage degree decreases with the distance from the fracture surface to the fracture surface, and the damage propagation distance is larger, while the fracture surface of the three-dimensional six-direction braided composite is flat and uniform. The internal damage is concentrated near the fracture surface, and the damage propagation distance is relatively small.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB332

【相似文献】

相关期刊论文 前10条

1 于平;周平;吴承伟;SEABROOKS L;;二维平纹编织复合材料压缩力学行为研究[J];计算力学学报;2008年02期

2 胡靖元;陈利阳;齐风华;张毅;;编织复合材料低速冲击响应与破坏模式分析[J];工程与试验;2013年02期

3 庞宝君,杜善义,韩杰才,王铎;三维多向编织复合材料非线性本构行为的细观数值模拟[J];复合材料学报;2000年01期

4 庞宝君,曾涛,杜善义;三维多向编织复合材料有效弹性模量的细观计算力学分析[J];计算力学学报;2001年02期

5 姚学锋,刘宁,简龙辉,林碧森,金观昌;编织复合材料的横向冲击力学行为研究[J];高科技纤维与应用;2001年05期

6 刘宁,姚学锋,陈俊达,林碧森,金观昌;编织复合材料的冲击损伤与断裂行为研究[J];实验力学;2002年02期

7 黄睿,袁慎芳,蒋云,陶宝祺;碳密封涂覆光纤在编织复合材料中的应用[J];复合材料学报;2002年02期

8 何煌,唐国金,蒋志刚,王可晟;编织复合材料圆柱壳的蠕变屈曲分析[J];重庆交通学院学报;2003年04期

9 张文毅,姚振汉,姚学锋,曹艳平;编织复合材料的一种数值模型[J];工程力学;2004年03期

10 李向华,袁慎芳,王鑫伟,黄睿;编入光纤后的3-D编织复合材料结构的力学建模[J];复合材料学报;2004年04期

相关会议论文 前10条

1 姚学锋;蒋小林;王丽宇;;用反射光弹性法研究编织复合材料的变形机理[A];复合材料的现状与发展——第十一届全国复合材料学术会议论文集[C];2000年

2 董伟锋;肖军;李勇;;2.5维编织复合材料的有限元模型与实验验证[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(下)[C];2006年

3 王国军;孙颖;李嘉禄;焦亚男;;碳/环氧三维多向编织复合材料超声衰减实验研究[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年

4 马振杰;陈利;刘景艳;梁子青;李嘉禄;;三维多向编织复合材料的纵向压缩性能研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年

5 王军;程小全;许延敏;郦正能;;平面编织复合材料单钉连接破坏分析研究[A];中国复合材料学术研讨会论文集[C];2005年

6 徐q;许希武;;三维五向编织复合材料力学性能的数值预测[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年

7 李金超;陈利;;三维五向编织复合材料弹性性能的有限元分析[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年

8 周原;俸翔;杨振宇;卢子兴;;热电比拟法在编织复合材料等效热传导系数预测中的应用[A];复合材料:创新与可持续发展(下册)[C];2010年

9 刘振国;张海国;卢子兴;李典森;;三维四向编织复合材料导热性能的研究[A];北京力学会第13届学术年会论文集[C];2007年

10 曾涛;方岱宁;;三维四向编织复合材料非线性响应及失效分析[A];首届全国航空航天领域中的力学问题学术研讨会论文集(下册)[C];2004年

相关博士学位论文 前10条

1 张典堂;三维五向编织复合材料全场力学响应特性及细观损伤分析[D];天津工业大学;2016年

2 刘建;PTFE填充KEVLAR纤维编织复合材料摩擦学性能研究[D];西北工业大学;2016年

3 马欣;三维编织复合材料健康监测碳纳米管线嵌入模型及特征的研究[D];天津工业大学;2017年

4 孙杰;编织复合材料结构与材料一体化优化设计[D];南京航空航天大学;2010年

5 方国东;三维四向碳/环氧编织复合材料积累损伤及失效分析[D];哈尔滨工业大学;2010年

6 张芳芳;编织复合材料力学性能及热物理性能预报研究[D];燕山大学;2014年

7 严实;三维四向编织复合材料的力学性能研究[D];哈尔滨工业大学;2007年

8 张超;三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D];南京航空航天大学;2013年

9 田金梅;叠层和编织复合材料动态特性研究的新方法[D];北京航空航天大学;2005年

10 姜黎黎;基于螺旋几何模型的三维编织复合材料热机械性能研究[D];哈尔滨理工大学;2013年

相关硕士学位论文 前10条

1 徐德f;三维六向编织复合材料力学性能及其参数反演分析[D];哈尔滨工业大学;2015年

2 陈涛;平纹编织复合材料连接性能分析[D];南昌大学;2015年

3 张琳;三维编织复合材料热传导性能研究[D];天津工业大学;2016年

4 申付朋;编织复合材料传动轴的数值模拟及分析软件开发[D];燕山大学;2016年

5 付成龙;碳纤维编织复合材料筋材的制备与性能分析[D];天津工业大学;2016年

6 季乐;三维多层缠绕编织复合材料细观结构与力学性能研究[D];南京航空航天大学;2015年

7 柯常宜;二维二轴编织复合材料细观几何模型及拉伸模量研究[D];东华大学;2017年

8 刘刚;2.5D碳/环氧编织复合材料的细观结构及弹性性能研究[D];哈尔滨工业大学;2014年

9 唐梦云;碳—芳纶混杂二维编织复合材料冲击性能实验研究[D];天津工业大学;2017年

10 郑园园;碳-芳纶混编三维编织复合材料拉伸性能实验研究[D];天津工业大学;2017年



本文编号:2295240

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2295240.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bae4e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com