微—纳米二元结构超疏水表面抑冰性能研究
[Abstract]:Superhydrophobic surfaces have a wide range of applications due to their strong hydrophobicity. At present, research on superhydrophobic surfaces has made some progress in basic theory, preparation methods and application properties. However, the study of superhydrophobic surface ice suppression performance is not enough and systematic, which is a field that needs to be further improved in the research of superhydrophobic materials. Therefore, on the basis of summarizing and analyzing the literature, this paper studies the ice-suppressive properties of superhydrophobic surfaces under the conditions of drip and condensate ice, and analyzes the microstructural characteristics of superhydrophobic surfaces by observing and analyzing the microstructures of superhydrophobic surfaces. The wettability of superhydrophobic surface under normal and condensing conditions was analyzed and discussed, and the mechanism of ice inhibition on superhydrophobic surface was analyzed and discussed in combination with the model. The main research contents and innovations are as follows: (1) A novel and simple preparation method was proposed to prepare superhydrophobic surfaces with micro-nano binary structure on (LDPE) substrates of low density polyethylene (LDPE). The contact angle of the surface is 155 卤2 掳and the rolling angle is only 4 掳. The ice inhibition properties of the superhydrophobic LDPE surface were studied. The results showed that the superhydrophobic LDPE surface maintained a good ice inhibition property both under drip ice condition and condensation water ice condition. In order to compare the ice inhibition properties of the leaves of weeping willow and banana leaves, the ice inhibition properties of the three superhydrophobic surfaces were studied. The results showed that the ice inhibition was not only under drip ice condition, but also under condensate water ice condition. The ice inhibition performance of the leaves was better than that of pansy petals, weeping willow leaves and banana leaves. Through careful observation and analysis of the microstructures of leaf surfaces and wettability of the five plants under normal and condensing conditions and the establishment of corresponding models, the reasons for the differences in the ice inhibition properties of different plant surfaces were explained. The conclusion is as follows: the higher the micrometer scale structure of superhydrophobic surface is, the richer the nano-scale structure is, the better the superhydrophobicity of superhydrophobic surface is, and the better the ice inhibition performance is under the condition of condensation. However, the higher the height of the superhydrophobic surface is, the less the nanostructure is, the worse the hydrophobicity of the superhydrophobic surface is, and the worse the ice inhibition performance is. (3) the template method is used to duplicate the structure twice. The surface structures of the five plants were prepared on the LDPE substrate, which were similar to those of the five plants, I. e., Calyx calyx, reflex mosaic, weeping willow leaf, banana leaf and pansy petal. The surface structure and ice inhibition properties of the five plants were characterized and studied. The experimental results show that the hydrophobic LDPE surface of Ye Chao is superior to that of the ordinary LDPE surface and has good stability.
【学位授予单位】:湖南工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB306
【相似文献】
相关期刊论文 前10条
1 魏增江;田冬;肖成龙;刘伟良;;超疏水表面:从制备方法到功能应用[J];化工进展;2009年11期
2 潘光;黄桥高;胡海豹;刘占一;;超疏水表面的润湿性及其应用研究[J];材料导报;2009年21期
3 牟丹;周奕含;;疏水高分子单链在疏水表面上吸附和扩散过程的分子动力学模拟[J];物理化学学报;2011年02期
4 ;超疏水表面制备技术取得进展[J];化工中间体;2011年04期
5 郭树虎;于志家;罗明宝;孙晓哲;;超疏水表面润湿理论研究进展[J];材料导报;2012年05期
6 秦亮;刘天庆;;亲/疏水表面上液滴滞后阻力的研究[J];化工进展;2012年08期
7 刘金秋;柏冲;徐文华;张献;刘迎凯;姚金水;刘伟良;;高黏附性超疏水表面的研究进展[J];应用化学;2013年07期
8 蒋雄;乔生儒;张程煜;胡海豹;刘晓菊;;疏水表面及其减阻研究[J];化学进展;2008年04期
9 林飞云;冯杰;黄明达;钟明强;;基于不锈钢模板热压微模塑构建聚乙烯超疏水表面[J];功能高分子学报;2010年02期
10 赖跃坤;陈忠;林昌健;;超疏水表面黏附性的研究进展[J];中国科学:化学;2011年04期
相关会议论文 前10条
1 高环;耿信鹏;王保怀;白泉;;变性牛血清蛋白在适度疏水表面上构象变化的盐浓度依赖性研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
2 柴瑜;耿信鹏;彭晶晶;郑长征;;盐浓度对天然核糖核酸酶在疏水表面上吸附稳定性及构象影响的研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
3 耿信鹏;郑美荣;王保怀;耿信笃;刘爱玲;;天然溶菌酶在疏水表面置换吸附焓的盐浓度影响研究[A];中国化学会第十三届全国化学热力学和热分析学术会议论文摘要集[C];2006年
4 王倩;杨振忠;;利用海胆状复合微球制备超疏水表面[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
5 陈胜;崔树勋;;超疏水表面自清洁机理研究[A];中国化学会第十四届胶体与界面化学会议论文摘要集-第2分会:溶液中的聚集与分子组装[C];2013年
6 冯小艳;耿信鹏;周烨;侯海云;;盐浓度对变性α-淀粉酶在疏水表面上吸附及构象的影响[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
7 宋付权;武玉海;俞巨高;;疏水-超疏水表面的简易制备方法[A];中国力学学会学术大会'2009论文摘要集[C];2009年
8 姜程;王齐华;;超疏水表面的研究及制备[A];甘肃省化学会二十六届年会暨第八届中学化学教学经验交流会论文集[C];2009年
9 胡海豹;陈立斌;黄苏和;鲍路遥;;水滴撞击超疏水表面的弹跳行为研究[A];第十二届全国物理力学学术会议论文摘要集[C];2012年
10 王媛怡;王庆军;陈庆民;;不同化学修饰超疏水表面疏冰功能的验证[A];2013年全国高分子学术论文报告会论文摘要集——主题F:功能高分子[C];2013年
相关重要报纸文章 前1条
1 李大庆;新面料何以冬暖夏凉[N];科技日报;2005年
相关博士学位论文 前3条
1 钱柏太;金属基体上超疏水表面的制备研究[D];大连理工大学;2006年
2 杨昊炜;聚硅氧烷超疏水表面制备及其性能研究[D];复旦大学;2011年
3 李晶;多元耦合仿生疏水金属表面制备原理与方法研究[D];吉林大学;2012年
相关硕士学位论文 前10条
1 时银龙;溶胶—凝胶法和水热合成法制备超疏水表面及其结构优化[D];华南理工大学;2015年
2 杨娜;超疏水表面在镁合金上制备及其抗腐蚀研究[D];西南大学;2015年
3 侯金林;反应性聚硅氧烷纳米颗粒的制备及超疏水表面的构筑[D];陕西科技大学;2015年
4 王梦蕾;微—纳米二元结构超疏水表面抑冰性能研究[D];湖南工业大学;2015年
5 李伟;镁合金基体上超疏水表面的制备及功能特性研究[D];华南理工大学;2015年
6 卢思;微纳米结构超疏水表面制备和减阻机理研究[D];清华大学;2012年
7 洪碧圆;超疏水表面的制备、性质和应用[D];浙江大学;2012年
8 陈胜;超疏水表面自清洁效应的表面力学分析[D];西南交通大学;2014年
9 崔道义;无机酸盐体系超疏水表面的制备及其结构性能表征[D];湘潭大学;2012年
10 林玮炜;超疏水表面制备及其抗凝血性能研究[D];浙江工业大学;2010年
,本文编号:2301202
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2301202.html