AFM探针诱导介电泳的三维纳米操作与装配
[Abstract]:With the rapid development of nanoscale research, nanofabrication with nanometer operation as the core is one of the most prospective and leading areas in nanotechnology. Compared with the nanotechnology based on self-assembly, optical tweezers, magnetic tweezers and SEM, it has some limitations, such as low precision, low efficiency, high cost or special requirements for the performance of the sample. It has the advantages of high resolution and high precision in atomic force microscope (AFM),). Dielectric electrophoretic (DEP), with high operation efficiency and universality has a wider range of applications in the field of nanometer operation. However, AFM still has low operation efficiency and can not meet the needs of batch operation. Traditional DEP operation requires fixed physical electrodes, which has poor flexibility, and lacks the ability of high precision and single operation in nanometer scale. These factors limit the further development and application of AFM and DEP. Therefore, how to take advantage of the advantages and avoid disadvantages and complement the advantages of AFM and DEP nanooperations, that is to say, combine the excellent positioning and high precision operation ability of AFM with the efficient operation ability of DEP technology, is a problem worth studying. In order to achieve the above research goal, the theoretical and experimental research on the three-dimensional nano-manipulation and assembly of AFM probe induced dielectric electrophoresis was carried out in this paper. The main work includes the following aspects: (1) the design of the experimental model and the construction of the experimental operating platform: the AFM conductive probe and the ITO conductive glass are combined as the opposite electrode. The conductive probe acts as a movable 3D DEP tweezers to induce DEP operation in the solution. (2) theoretical simulation and analysis of AFM probe induced dielectric electrophoresis: using COMSOL Multiphysics 4.3a software, a model is established to simulate and analyze several parameters that affect the experimental results. (3) Design of microfluidic chip Processing: for the controllability of the process of experimental operation, Continuity, According to the principle of the connectors, a microfluidic chip is designed to maintain a stable liquid operating environment continuously and accurately. (4) the fast automatic repositioning method for nano-targets for AFM is studied: in order to solve the problem of accurately characterizing the experimental results, Because of the contamination of the probe and the moving of the sample substrate, we need to face the problem of target relocating. We have explored a fast automatic relocation method for the nanometer target for AFM, which can identify a pair of reference points. It is possible to realize the localization of multiple nanoscale targets on the substrate in turn. (5) the evaluation criteria for the characterization of experimental results: the volume is used as the criterion for evaluating the experimental results, and the calculation method of equal volume conversion is explored. (6) Verification and optimization of experimental parameters. The nanospheres were operated to form a three-dimensional nano-lattice and a linear structure. Through the design and construction of the experimental model of three-dimensional nanoscale operation and assembly of AFM probe induced dielectric electrophoresis, the detailed experimental verification is carried out on the basis of theoretical analysis. It is fully proved that this probe induced dielectric electrophoresis technology is feasible. In the future, it will have great potential in the rapid fabrication of nanostructures and arrays, as well as in the precise, controllable and non-destructive operation of biological nanoparticles.
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 陈雨田;;介电泳原理与介电分选[J];国外金属矿选矿;1965年09期
2 张鹤腾;韩萍;沈光涛;戴景峰;陈慧英;;介电泳及其在无机微粒分离研究中的应用[J];中央民族大学学报(自然科学版);2008年03期
3 蒋珂玮;刘伟景;万丽娟;张健;;对于氧化锌棒状结构的介电泳操控研究[J];传感技术学报;2008年07期
4 王淑娥;曲艳丽;董再励;杨洋;周磊;;基于介电泳机理的金纳米颗粒传感器装配方法[J];微纳电子技术;2011年12期
5 张鑫杰;倪中华;;纳米粒子介电泳的分子动力学模拟[J];东南大学学报(自然科学版);2008年05期
6 许静;赵湛;方震;刘泳宏;杜利东;耿道渠;;基于介电泳诱捕与阻抗测量的三维网格型生物传感器的研究[J];分析化学;2011年03期
7 刘伟景;张健;万丽娟;蒋珂玮;吕家云;;介电泳操控纳米材料及其在微纳传感器中的应用[J];传感技术学报;2008年01期
8 倪中华;张鑫杰;易红;;介电泳驱动纳米胶体分离的分子动力学模拟[J];中国科学(E辑:技术科学);2009年06期
9 王淑娥;曲艳丽;董再励;周磊;刘柱;;基于光诱导介电泳的微粒自动化操作实验研究[J];微纳电子技术;2011年02期
10 陈慧英;朱岳麟;张鹤腾;郭红;李荻;;油品中无机微粒的介电响应(英文)[J];石油学报(石油加工);2010年02期
相关会议论文 前5条
1 陈波;吴健康;;介电泳颗粒的相互作用和细胞珍珠链现象[A];中国力学大会——2013论文摘要集[C];2013年
2 刘伟景;张健;万丽娟;蒋珂玮;;纳米结构在微纳传感器应用中的介电泳操控研究[A];第六届中国功能材料及其应用学术会议论文集(6)[C];2007年
3 任玉坤;姜洪源;;基于金属/溶液界面双电层效应的金属粒子反常规介电泳特征[A];中国力学大会——2013论文摘要集[C];2013年
4 于鹏;李明林;董再励;周磊;刘柱;;基于行波介电泳原理的微粒操纵系统及实验研究[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C];2008年
5 任春平;;利用弧状电极产生步进电场之介电泳细胞预浓缩晶片[A];2010年第四届微纳米海峡两岸科技暨纳微米系统与加工制备中的力学问题研讨会摘要集[C];2010年
相关博士学位论文 前1条
1 Muhammad Rizwan Malik;[D];华中科技大学;2011年
相关硕士学位论文 前10条
1 韩萍;介电泳研究细胞介电响应规律、分离及重金属毒作用机理[D];中央民族大学;2008年
2 索灿;ZnO一维纳米材料制备、修饰、介电泳操控及气敏传感器构建研究[D];郑州大学;2015年
3 钱成;面向细胞位姿调节的介电泳操作机理分析与实验研究[D];苏州大学;2015年
4 周培林;AFM探针诱导介电泳的三维纳米操作与装配[D];沈阳理工大学;2015年
5 胡婧;吸附—介电泳法去除水中氨氮的工艺及机理研究[D];中央民族大学;2015年
6 李彬;流道结构诱导的绝缘介电泳分离微尺度粒子研究[D];哈尔滨工业大学;2014年
7 冯国敬;介电泳驱动球形粒子的运动速度及其影响因素研究[D];哈尔滨工业大学;2012年
8 吴晶;吸附/介电泳法去除水中重金属离子[D];中央民族大学;2013年
9 龚杰;用于介电泳操纵的C-MEMS电极设计与制备技术研究[D];华中科技大学;2009年
10 张璐;介电泳对TiO_2等无机纳米微粒操控定位及制备的研究[D];中央民族大学;2012年
,本文编号:2319802
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2319802.html