非晶态氧化锆纳米颗粒的制备方法研究
发布时间:2018-11-10 08:41
【摘要】:氧化锆具有良好的力学、热学、化学以及生物相容性等性能,纳米化后的氧化锆的性能发生变化并且出现一些新的特性。纳米玻璃由于具有全新的原子结构排列,因而可能会具有不同于纳米陶瓷的新的性能。非晶态Zr02由于短程有序长程无序的非晶结构,热力学上的亚稳态,高介电常数特性,在半导体、催化剂、光学器件等方面有较好的应用前景。本文设想通过压制非晶态氧化锆纳米颗粒来制备氧化锆纳米玻璃,因此纳米尺寸的、球形的、粒径分布窄的、团聚少的非晶态氧化锆颗粒的制备成为纳米玻璃研究的基础。非晶态氧化锆纳米颗粒可通过低温煅烧颗粒尺寸细小、形貌规则、粒径分布窄、团聚少的氧化锆前驱体来制备。文献报道的制备方法存在团聚严重、成本高、操作复杂等缺点。因此,探索在低成本下制备高质量氧化锆前驱体纳米颗粒的方法是急需解决的问题。本文采用溶胶-凝胶法和均匀沉淀法来制备氧化锆前驱体纳米颗粒。将制得的氧化锆前驱体在空气中300℃煅烧,得到非晶态氧化锆纳米颗粒。通过X射线衍射分析、红外光谱分析、热重/差热分析、扫描电子显微镜分析、透射电子显微镜分析,对制备的样品的结构、组成、形貌进行表征。在溶胶-凝胶法中,将氧氯化锆溶于醇与水的混合溶液中,水浴加热得到凝胶,再用氨水进行滴定,得到氧化锆前驱体。实验和表征结果表明,醇的种类、醇-水体积比、水浴温度、反应物浓度、干燥方式均对产物的形貌、尺寸和分散性产生影响。实验的最佳制备条件如下:水浴温度60℃,选择异丙醇,醇与水体积比5:1,氧氯化锆浓度5 mM,制备得到非晶态氧化锆纳米颗粒,颗粒间存在一定的团聚,平均颗粒尺寸为17 nm。在均匀沉淀法中,以硫酸锆、硝酸锆为锆源,以甲酰胺(CH3NO)为沉淀剂,制备了团聚轻、粒径分布较窄的氧化锆前驱体。使用聚乙二醇(PEG)为表面活性剂,通过调整锆离子浓度、硝酸根与硫酸根的比例,对样品颗粒尺寸进行控制。结果表明,当硝酸锆与硫酸锆的摩尔比为8:1,锆离子浓度在1mM时,产物为非晶态氧化锆纳米颗粒,颗粒形貌近似球形,分散性良好,且颗粒尺寸分布在5~25 nm之间,平均颗粒尺寸14 nm。
[Abstract]:Zirconia has good mechanical, thermal, chemical and biocompatibility properties. The properties of nanocrystalline zirconia have changed and some new properties have appeared. Nanocrystalline glasses may have new properties different from nanocrystalline because of their new atomic structure. Amorphous Zr02 has promising applications in semiconductor, catalyst and optical devices due to its short range ordered long range disordered amorphous structure, thermodynamics metastable state and high dielectric constant. In this paper, the preparation of amorphous zirconia nanocrystals by pressing amorphous zirconia nanoparticles is envisaged. Therefore, the preparation of nanometer-sized, spherical, narrow particle size and less agglomeration amorphous zirconia particles becomes the basis of the study of nanocrystalline glasses. Amorphous zirconia nanoparticles can be prepared by calcined zirconia precursors with small size, regular morphology, narrow particle size distribution and less agglomeration at low temperature. It is reported that the preparation method has the disadvantages of serious agglomeration, high cost and complicated operation. Therefore, it is urgent to explore the method of preparing high quality zirconia nanoparticles at low cost. In this paper, zirconia precursor nanoparticles were prepared by sol-gel method and homogeneous precipitation method. The zirconia precursor was calcined in air at 300 鈩,
本文编号:2321949
[Abstract]:Zirconia has good mechanical, thermal, chemical and biocompatibility properties. The properties of nanocrystalline zirconia have changed and some new properties have appeared. Nanocrystalline glasses may have new properties different from nanocrystalline because of their new atomic structure. Amorphous Zr02 has promising applications in semiconductor, catalyst and optical devices due to its short range ordered long range disordered amorphous structure, thermodynamics metastable state and high dielectric constant. In this paper, the preparation of amorphous zirconia nanocrystals by pressing amorphous zirconia nanoparticles is envisaged. Therefore, the preparation of nanometer-sized, spherical, narrow particle size and less agglomeration amorphous zirconia particles becomes the basis of the study of nanocrystalline glasses. Amorphous zirconia nanoparticles can be prepared by calcined zirconia precursors with small size, regular morphology, narrow particle size distribution and less agglomeration at low temperature. It is reported that the preparation method has the disadvantages of serious agglomeration, high cost and complicated operation. Therefore, it is urgent to explore the method of preparing high quality zirconia nanoparticles at low cost. In this paper, zirconia precursor nanoparticles were prepared by sol-gel method and homogeneous precipitation method. The zirconia precursor was calcined in air at 300 鈩,
本文编号:2321949
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2321949.html