低维钛基纳米材料的水热合成及其在染料废水处理中的应用
[Abstract]:The preparation of the low-dimensional titanium-based nano-materials such as titanium dioxide or titanate based on the hydrothermal method has been one of the hot spots of the nano-science for nearly two decades due to the special layered structure and the larger specific surface area. The scientists have done a lot of work around the appearance and control of the low-dimensional titanium-based nano-materials, the improvement of the photocatalytic performance and the potential applications in other fields. However, for the present situation, there is still a lot of space for the research of the low-dimensional titanium-based nano-materials. Through further research, we believe that the low-dimensional titanium-based nano-material has a wide application prospect. In this paper, the structure of the one-dimensional titanium-based nano-material and the improvement of the photocatalytic property of the low-dimensional titanium-based nano-material are studied in this paper. One-dimensional titanium-based nanotubes were prepared by hydrothermal method in the NaOH solution of 10M using P25 as the raw material, and the titanium-based nanotubes with different protonation were obtained by controlling the amount of Na + in 0.1 M hydrochloric acid to H + ion exchange. The contents of the remaining Na + in the samples were respectively 4.996%, 2.914%, 0.668%, 0.192%, 0.061%, and 0.052%, respectively, by ICP. The content of Na + in the partially protonic titanium-based nanotubes plays an important role in the stabilization of the tubular structure. With the increase of the degree of protonation, the morphology of the sample subjected to heat treatment at 450.d egree. C. is transformed from the tube to the rod. The morphology, composition and specific surface area of a series of partially protonic titanium-based nanotubes were studied. The rare-earth-earth Gd-doped TiO _ 2 nanoparticles were prepared by sol-gel method and heat treatment (Gd/ Ti = 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0). By XRD, the unadulterated titanium dioxide nano-particles show a rutile phase after heat treatment at 700 DEG C, the crystal of the titanium dioxide nano-particles is inhibited with the increase of the Gd doping amount, the composition of the Gd-doped titanium dioxide nano-particles is gradually changed from the rutile to the anatase, while the particle size is gradually reduced. The effect of Gd-doped TiO _ 2 nanoparticles on the photocatalytic degradation of methyl orange with the change of composition and crystallinity was studied. The Gd-doped titanium dioxide nano-particles prepared by the sol-gel method are used as raw materials, and the Gd-doped titanium dioxide nano-tubes are prepared by hydrothermal reaction at the temperature of 150 DEG C for 24 hours in a 10-M NaOH solution and after the Gd-doped titanium dioxide nano-particles are subjected to a post-treatment process. The actual Gd-doping in the titanium dioxide nanotubes doped with Gd-doped titanium dioxide was 0. 085%, 0. 131%, 0. 280%, 0. 706%, 1. 735% and 4.715%, respectively, by ICP. The effect of Gd doping on the components, structure, optical properties and photocatalytic degradation of methyl orange in titanium dioxide nanotubes was studied. The effect of the initial concentration of methyl orange on the degradation ability of the best catalyst was also studied. The Fe 3O 4 ball was prepared by the solvent-heat method with ferric chloride as the raw material. The diameter of the ball was about 198 nm, and it was composed of small particles of about 8 nm. The Fe3O4 ball is self-assembled in a space formed by a polystyrene sulfonic acid-maleic acid copolymer sodium salt molecular chain with a negative charge, and has good water solubility and dispersibility. A layer of SiO2 was coated on the surface of the Fe3O4 by the Stover method, and the presence of the SiO2 layer was demonstrated by means of TEM, XRD and FTIR. It was found that the addition of ethyl orthosilicate had a significant effect on the thickness of the shell, and the agglomeration of the product can be reduced by the way of sub-addition. using the Fe3O4@SiO2 as the core, a layer of amorphous titanium dioxide is coated on the surface to form a Fe3O4@SiO2 @ AT three-layer structure, and the SiO2 layer of the titanium dioxide and the inner layer is tightly combined by the form of a Ti-O-Si bond. The Fe3O4@titanate-level structure was prepared by hydrothermal reaction to the Fe3O4@SiO2 @ AT, and the effect of the hydrothermal temperature and the alkalinity on the morphology of the product was studied. The best reaction condition was obtained. The .Fe3O4@titanate-like structure had a good superparamagnetism and the saturation magnetic susceptibility reached 39.6emu/ g. The adsorption rate of methylene blue is more than 85% in the adsorption experiment, and the adsorption rate of methylene blue after two re-activation is still more than 80%, which is an ideal material for the recovery of the adsorbent. At the same time, according to the similar thought, using the Fe3O4@SiO2 as the core and using the hexadecyl trimethyl bromide as the template agent, the Fe3O4@SiO2 three-layer structure of the surface dielectric hole is prepared. In order to obtain the Fe3O4@SiO2 @ mSiO2 structure with uniform morphology and good dispersion, the effects of reaction parameters such as reaction time, amount of ethyl orthosilicate and the amount of ammonia water on the morphology and structure of the product were studied.
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:X788;TB383.1
【相似文献】
相关期刊论文 前10条
1 杜仕国,施冬梅,邓辉;纳米材料的特异效应及其应用[J];自然杂志;2000年02期
2 ;纳米材料 新世纪的黄金材料[J];城市技术监督;2000年10期
3 ;什么是纳米材料[J];中国粉体技术;2000年05期
4 邹超贤;纳米材料的制备及其应用[J];广西化纤通讯;2000年01期
5 吴祖其;纳米材料[J];光源与照明;2000年03期
6 ;纳米材料的特性与应用方向[J];河北陶瓷;2000年04期
7 沈青;纳米材料的性能[J];江苏陶瓷;2000年01期
8 李良训;纳米材料的特性及应用[J];金山油化纤;2000年01期
9 刘冰,任兰亭;21世纪材料发展的方向—纳米材料[J];青岛大学学报(自然科学版);2000年03期
10 刘忆,刘卫华,訾树燕,王彦芳;纳米材料的特殊性能及其应用[J];沈阳工业大学学报;2000年01期
相关会议论文 前10条
1 王少强;邱化玉;;纳米材料在造纸领域中的应用[A];'2006(第十三届)全国造纸化学品开发应用技术研讨会论文集[C];2006年
2 宋云扬;余涛;李艳军;;纳米材料的毒理学安全性研究进展[A];2010中国环境科学学会学术年会论文集(第四卷)[C];2010年
3 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
4 钟家湘;葛雄章;刘景春;;纳米材料改造传统产业的实践与建议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
5 高善民;孙树声;;纳米材料的应用及科研开发[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
6 ;全国第二届纳米材料和技术应用会议[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年
7 金一和;孙鹏;张颖花;;纳米材料的潜在性危害问题[A];中国毒理学通讯[C];2001年
8 张一方;吕毓松;任德华;陈永康;;纳米材料的二种制备方法及其特征[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
9 古宏晨;;纳米材料产业化重大问题及共性问题[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
10 马玉宝;任宪福;;纳米科技与纳米材料[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
相关重要报纸文章 前10条
1 记者 周建人;我国出台首批纳米材料国家标准[N];中国建材报;2005年
2 记者 王阳;上海形成纳米材料测试服务体系[N];上海科技报;2004年
3 ;纳米材料七项标准出台[N];世界金属导报;2005年
4 通讯员 韦承金邋记者 冯国梧;纳米材料也可污染环境[N];科技日报;2008年
5 廖联明;纳米材料 利弊皆因个头小[N];健康报;2009年
6 卢水平;院士建议开展纳米材料毒性研究[N];中国化工报;2009年
7 郭良宏 中国科学院生态环境研究中心研究员 江桂斌 中国科学院院士;纳米材料的环境应用与毒性效应[N];中国社会科学报;2010年
8 记者 任雪梅 莫璇;中科院纳米材料产业园落户佛山[N];佛山日报;2011年
9 实习生 高敏;纳米材料:小身材涵盖多领域[N];科技日报;2014年
10 本报记者 李军;纳米材料加速传统行业升级[N];中国化工报;2013年
相关博士学位论文 前10条
1 杨杨;功能化稀土纳米材料的合成及其生物成像应用[D];复旦大学;2014年
2 王艳丽;基于氧化钛和氧化锡纳米材料的制备及其在能量存储中的应用[D];复旦大学;2014年
3 吴勇权;含铕稀土纳米材料的功能化及其生物成像应用研究[D];复旦大学;2014年
4 曹仕秀;二硫化钨(WS_2)纳米材料的水热合成与光吸收性能研究[D];重庆大学;2015年
5 廖蕾;基于功能纳米材料的电化学催化研究[D];复旦大学;2014年
6 胥明;一维氧化物、硫化物纳米材料的制备,,功能化与应用[D];复旦大学;2014年
7 李淑焕;纳米材料亲疏水性的实验测定与计算预测[D];山东大学;2015年
8 范艳斌;亚细胞水平靶向的纳米材料的设计、制备与应用[D];复旦大学;2014年
9 丁泓铭;纳米粒子与细胞相互作用的理论模拟研究[D];南京大学;2015年
10 骆凯;基于金和石墨烯纳米材料的生物分子化学发光新方法及其应用[D];西北大学;2015年
相关硕士学位论文 前10条
1 向芸颉;卟啉纳米材料的制备及其应用研究[D];重庆大学;2010年
2 刘武;层状纳米材料/聚合物复合改性沥青的制备与性能[D];华南理工大学;2015年
3 刘小芳;基于纳米材料/聚合膜材料构建的电化学传感器应用于生物小分子多组分的检测[D];西南大学;2015年
4 王小萍;基于金纳米材料构建的电化学传感器及其应用[D];上海师范大学;2015年
5 郭建华;金纳米材料的修饰及其纳米生物界面的研究[D];河北大学;2015年
6 魏杰;普鲁士蓝纳米粒子的光热毒性研究[D];上海师范大学;2015年
7 张华艳;改性TiO_2纳米材料的制备及其光电性能研究[D];河北大学;2015年
8 胡雪连;基于纳米材料的新型荧光传感体系的构筑[D];江南大学;2015年
9 黄樊;氧化钴基催化材料形貌、晶面控制与催化性能研究[D];昆明理工大学;2015年
10 周佳林;新型核壳结构金纳米材料用于肿瘤的近红外光热治疗研究[D];浙江大学;2015年
本文编号:2378101
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2378101.html