表面等离激元共振诱导的金纳米结构的三阶光学非线性增强效应研究
[Abstract]:The surface plasmon is widely studied due to the local field enhancement and high efficiency coupling energy transmission characteristics. The metal nanostructure based on the surface plasmon characteristics can be applied to the fields of surface enhanced Raman scattering, ultra-sensitive single-molecule detection, biological cancer treatment, and nano-photonic devices. The composite nano-structure of the noble metal has a large third-order optical nonlinearity due to the local field enhancement and the resonance absorption, and the application of the noble metal composite nano-structure in the fields of optical switches, optical information processing, and optoelectronic devices has been the main focus of the research on the plasmon excitation. The super-fast time-response characteristics of the metal nanostructures are also a hot topic in the study of the isotropy. It is an important application in the aspects of photoelectric conversion, photoelectric detection, photochemical reaction, and ultra-fast device. Therefore, it is very important to understand the generation of hot electrons and the physical mechanism of the relaxation process, which can control the generation and relaxation time scale of the hot electrons by controlling the nano-structure parameters and the excitation conditions. The third-order optical nonlinearity of the Au-Ni-Au composite nanorod array, such as the surface plasmon resonance enhancement, the third-order optical nonlinear and ultra-fast time response characteristics of the gold nano-cone, and the third-order optical nonlinearity of the aluminum nano-film structure, are studied in this paper. The construction and the principle of the optical path system are introduced. The main contents include the following aspects: 1. We set up the optical Kerr, the ultra-continuous white light pump detection and the Z-scan optical path, and the theory of each optical path, the measured physical quantity and the physical mechanism in it. The third-order optical nonlinear and super-fast time-response characteristics of the metal nanostructures were studied by using the Z-scan and the optical Kerr optical circuit.. 2. We prepared an Au-Ni-Au composite with a diameter of 18m in an alumina template. the longitudinal or the like of the composite nanorods is approximately 800 from the resonant wavelength, The third-order optical of the sample was measured using the Z-Scan technique. Non-linear. Large third-order non-linear absorption coefficient-2.65-106cm is obtained at the longitudinal and other off-resonance wavelengths. The variation of the nonlinear absorption coefficient of the Au-Ni-Au composite nanorods with the excitation wavelength and the incident light angle shows that the large enhancement of the third-order optical nonlinearity is due to the strong coupling effect of the longitudinal and other off-excitation elements between the nanorods. By comparing the Au-Ni-Au composite nanorod array and the pure Au single-segment nanorod array, we find that after the first segment of Au is grown, a very thin layer of Ni is deposited, and then the growth of a segment of Au will result in the third-order optical non-linearity. enhancement. this can be attributed to the formation of the nano-capture level in the nano-interface and the co-operation of the local field enhancement between the adjacent rods and the multi-segment in the rod, the design and measurement means of such nanostructures provide a very effective way to control non-linear light in a future plasma optical device, 3. The third order nonlinear optical polarization of the gold nano-cone is studied by the optical Kerr time resolution technique. The third-order nonlinear optical polarization of the gold nano-cone is increased from 7. 4 to 10 to 13 esu, and its quality factor is in the range of ~
10-13esu. cm u, as the excitation light wavelength shifts from the non-resonant wavelength (780nm) to the longitudinal resonance wavelength (825nm). The super-fast time response curve of the gold nano-cone presents two different decay processes. The fast decay process is from 141 to 23fs to 83-8fs, and the slow decay process is from 3200 to 200fs to 2310. The enhancement of the third-order nonlinear optical polarization ratio of 158fs is caused by the local field enhancement caused by the surface plasmon resonance, and the response time of the fast and slow decay process is caused by the resonance of the surface of the gold nano-cone system and the like away from the excitation element. an increase in the probability of scattering of electrons and electrons, electrons and sound These basic studies provide a way to control the time scale of hot electrons, by designing and preparing a suitable nanostructure, adjusting the relaxation time of the surface such as the surface plasmon induced by the off-resonance peak, so as to be applied to photocatalysis, light detection and light. The ultra-fast optical properties of the gold nano-cone are also very important in the field of ultra-fast optical information processing in the future 4. We introduce the research on the surface of aluminum, such as the surface of aluminum, and apply it to the characteristics of the surface of aluminum and the like. Detailed description is given. Based on the excellent properties of the aluminum-based surface and the like, we expect to obtain different structural types and rulers by adjusting the structural parameters and the coating conditions of the substrate The aluminum nano-film of the invention realizes the regulation of the resonance wavelength of the off-excitation element such as the surface of the aluminum and the like, and simultaneously obtains a large third order. As a result, two types of aluminum oxide templates were prepared by the method of template electrochemistry, and the aluminum nano-hole films were formed on the aluminum oxide template by the evaporation method, and the third order optical nonlinearity was determined by the Z-scan technique. The work of the next step is to study the structure parameters of the aluminum oxide template and the surface plasmon resonance wavelength of the aluminum and the three-stage optical non-linearity. The research work on the surface of aluminum and the like provides a simple, easy-to-control and high-feasibility preparation of aluminum
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 钱鹰,孙岳明,刘举正,吴建耀,李富铭;几种金属有机化合物的合成、结构和光学非线性[J];中国激光;1998年03期
2 李淳飞;宋瑛林;;C_(60)分子的研究概况及其新进展[J];激光与光电子学进展;1993年03期
3 郑文琦;单凝;裴松皓;彭慰先;王杏乔;;单体卟啉和二聚体卟啉的合成及其三阶光学非线性的研究[J];有机化学;2008年03期
4 刘志斌,潘海滨,金锋,张新夷,周映春,黄素秋;取代基对卟啉三阶光学非线性及弛豫过程的影响[J];光学学报;1996年07期
5 刘志斌,张新夷,周映雪,田宏健,许慧君,周庆复;以柔性链共价连接的卟啉-酞菁二元分子三阶光学非线性及激发态弛豫过程的研究[J];科学通报;1995年14期
6 张强,赵志国,李利珍,顾玉宗,邢前,毛艳丽,郭立俊,余保龙,符瑞生,黄亚彬;In_2O_3纳米微粒的光学非线性研究[J];河南大学学报(自然科学版);1999年03期
7 卿胜兰;辜敏;甘平;;三阶光学非线性CdS-SiO_2复合薄膜的电化学溶胶-凝胶制备及表征[J];硅酸盐学报;2013年03期
8 钱鹰,肖国民,林保平,李海航,袁春伟;新型双羟乙氨基硝基型偶氮分子的合成、光学非线性和热稳定性[J];东南大学学报(自然科学版);2004年04期
9 卿胜兰;甘平;;高三阶光学非线性Cd/CdS-SiO_2复合薄膜的电化学 溶胶凝胶制备及表征[J];无机材料学报;2013年06期
10 杨景海,徐辑彦,卢士忠;新型光学非线性材料——金属有机络合物晶体[J];松辽学刊(自然科学版);1993年03期
相关会议论文 前10条
1 杨柏峰;张程祥;田德诚;;各向异性半导体掺杂复合材料的光学非线性增强特性的理论研究[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
2 叶明新;姬利永;张艳武;刘丽英;徐雷;王文澄;;席夫碱类有机分子的合成和二阶光学非线性研究[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
3 王云祥;宋瑛林;杨俊义;王金勇;赵永贵;翁天满;;C_(70)在皮秒时域的三阶光学非线性研究[A];2007年先进激光技术发展与应用研讨会论文集[C];2007年
4 邓燕;王沛;焦小瑾;明海;;表面等离子体增强的光学非线性研究[A];光子科技创新与产业化——长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集[C];2006年
5 张丙芳;张学如;李茫雪;白士刚;刘勇;;含光学非线性介质薄膜对表面等离子波的影响[A];第二届红外成像系统仿真测试与评价技术研讨会论文集[C];2008年
6 王雪华;;准相位匹配微结构中光学非线性频率转换的准确解-格林函数方法[A];第八届全国光学前沿问题讨论会论文集[C];2009年
7 佘卫龙;;光折变空间孤子的研究[A];第七届全国光学前沿问题讨论会论文摘要集[C];2007年
8 佘卫龙;;光折变空间孤子的研究(特邀)[A];中国光学学会2006年学术大会论文摘要集[C];2006年
9 曹鹏飞;杨昆;;ps/ns脉冲序列作用下热致光学非线性的动力学理论研究[A];2006年全国光电技术学术交流会会议文集(B 光学系统设计与制造技术专题)[C];2006年
10 李芳琴;杨峰;宗楠;杨晶;彭钦军;崔大复;许祖彦;;Z-扫描技术的理论及KBBF晶体三阶光学非线性实验研究[A];第八届全国光学前沿问题讨论会论文集[C];2009年
相关博士学位论文 前10条
1 虞应;表面等离激元共振诱导的金纳米结构的三阶光学非线性增强效应研究[D];华中科技大学;2015年
2 刘秀;光激励下有机分子重新取向诱导的液晶三阶光学非线性的动力学过程研究[D];复旦大学;2006年
3 杨俊义;基于相位物体若干光学非线性测量技术的研究[D];苏州大学;2010年
4 欧阳秋云;静电自组装薄膜光学非线性测量的实验与理论研究[D];哈尔滨工业大学;2006年
5 韩亚萍;金属银、铜纳米线的制备及其光学非线性研究[D];黑龙江大学;2008年
6 钱鹰;有机多极分子和偶极分子的光学非线性[D];东南大学;2005年
7 李常伟;硒化锌及芴类衍生物的双光子光学非线性研究[D];哈尔滨工业大学;2010年
8 陈聪;钙钛矿氧化物薄膜的电学及光学非线性特性研究[D];中国科学技术大学;2011年
9 孙真荣;PPV衍生物及金属有机配位化合物的三阶光学非线性研究[D];华东师范大学;2000年
10 赵欣;氧化石墨烯及其杂化材料超快光学非线性研究[D];南开大学;2013年
相关硕士学位论文 前10条
1 吴巍巍;高灵敏度光学非线性动力学测量技术的研究[D];苏州大学;2015年
2 贾纪平;反射Z-扫描方法测量半导体InN的光学非线性[D];苏州大学;2015年
3 史敏;表面三阶光学非线性测量技术的研究[D];苏州大学;2013年
4 彭显楚;Z-扫描表征技术与分散黄-7薄膜的光学非线性研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年
5 储祥勇;新型有机材料光学非线性的研究[D];苏州大学;2014年
6 孙恩伟;掺铪铌酸锂晶体的光学非线性吸收与折射特性的实验研究[D];哈尔滨工业大学;2007年
7 蔡琦婧;反射4f相位相干成像法测量材料表面光学非线性的研究[D];苏州大学;2010年
8 杨永兴;Z扫描方法测量硫系玻璃三阶光学非线性[D];哈尔滨工业大学;2008年
9 刘宓;基于Z-扫描技术的半导体纳米粒子三阶光学非线性的研究[D];东南大学;2005年
10 方用;非线性吸收诱导的热光学非线性研究[D];哈尔滨工业大学;2007年
,本文编号:2380108
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2380108.html