镁基储氢材料的改性及其性能研究
[Abstract]:Magnesium based hydrogen storage materials are considered as one of the most promising hydrogen storage materials due to their high hydrogen storage capacity (7.6 wt.%), rich resources and low cost, but their high hydrogen absorption and desorption temperatures. The slow kinetics of hydrogen absorption and desorption hinders its practical industrial application. In this paper, the effect of high temperature and high pressure hydrogenation on the content of Mg H2 in the sample was studied by using Mg powder as the initial raw material. Furthermore, the Cs FFU Ti Ni F 2 was selected to modify Mg H2 by multiphase ball milling. The hydrogen desorption properties of Mg H2 Li Al H 4 composite system were also studied. In this paper, Mg H2 hydrogen storage alloys were prepared by using p-C-T tester under high temperature and high pressure. The optimum preparation process was determined. The milling parameters of Mg powder were as follows: ratio of ball to material 40: 1, rotational speed 300 r / min, milling time 6 h, argon gas, hydrogenation parameter: hydrogen pressure 4 MPA, temperature 653 K, twice hydrogenation time 48 h and 24 h, respectively. It is found that the content of Mg H2 in the sample prepared by the above process is about 98 wt.%. Furthermore, the hydrogen storage samples of Mg H 2M (M:Cs FN Ti Ni F 2) were prepared by multiphase ball milling. The results of hydrogen absorption and desorption and XRD test showed that the three additives had a good catalytic effect on the hydrogen absorption and desorption kinetics of Mg H2, but the mechanism of their catalytic mechanism was different, and. Ti C existed stably in the process of hydrogen absorption and desorption. There was no reaction with Mg H2, which resulted in the surface modification of Mg H2 in the form of traditional catalyst, which improved the hydrogen absorption and desorption performance of Mg H2. However, the reaction of 2Cs F Mg H 2 + 2Cs H Mg F 2N Ni F2?4H2O 7Mg H 2 Mg2Ni H 4 Mg F 2 4Mg O 9H2 with the matrix occurred during the hydrogen absorption and desorption process of Cs F 2 Ni F 2, which promoted the hydrogen absorption and desorption process of Mg H 2. For Cs F and Ti C, both showed the best catalytic effect at the addition amount of 5wt.%, while the performance of Ni F2 was better when adding 2wt.%. Compared with each other, the catalytic activity of Cs F is more prominent. When the addition amount of Cs F is 5 wt.%, the hydrogen release capacity at 573K reaches 7.06wt.and the reversible hydrogen absorption capacity is 7.09wt.and the hydrogen absorption capacity at 473K reaches 6.33wt. The hydrogen release properties of Mg H 2 Li Al H 4 O mg H 2 Li Al H 4 5wt.%Ti C prepared by ball milling were tested and XRD results showed that Mg H 2 Li Al H 4 was superior to Mg H 2. At low temperature (under 473K), Mg H _ 2 Li Al H _ 4 exhibits only the unilateral hydrogen release behavior of Li Al H _ 4. When the temperature reaches 523K, there is a synergistic hydrogen release effect. The synergistic effect is that the Al atoms produced by the decomposition of Li Al H4 decrease the stability of Mg H2, and produce two new phases, Mg2Al3 and Mg17Al12, which change the process of Mg H2 dehydrogenation. The addition of Ti C on the basis of Mg H2 Li Al H4 increases the phase interface between Mg H2 and Li Al H4, which is beneficial to the synergistic dehydrogenation effect between Mg H2 and Li Al H4, and further improves the dehydrogenation kinetics of the system.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB34
【相似文献】
相关期刊论文 前10条
1 陈伟;李慎兰;罗刚;韩兴博;陈德敏;刘实;杨柯;;载钯硅藻土的制备及其吸放氢性能研究[J];原子能科学技术;2010年08期
2 宏存茂,马兰,黄季平,林秋竹,韩德刚;钛锰二元合金的吸放氢性能[J];北京大学学报(自然科学版);1991年02期
3 周惦武;刘金水;卢远志;张楚慧;;镁基储氢材料的吸放氢性能[J];机械工程材料;2008年04期
4 程宏辉;李文彪;李超;杨艳能;潘金平;;容量法材料吸放氢性能测试技术研究进展[J];煤炭技术;2014年02期
5 夏罗生;朱树红;;Al-LiBH_4体系解氢性能的机制研究[J];稀有金属;2013年04期
6 于振兴,王尔德,刘祖岩,线恒泽;纳米晶复合物Mg-Ni-Cr_2O_3的吸放氢性能[J];中国有色金属学报;2002年04期
7 晓敏;Ti_3Al-Ni合金的吸放氢性能[J];金属功能材料;2002年05期
8 长征;细晶富镁Mg-Ni-Nd合金的吸放氢性能[J];金属功能材料;2003年01期
9 吴哲;肖学章;俞凯嵘;范修林;李寿权;陈立新;;镨、钕氢化物催化剂对NaH/Al复合物吸放氢性能的影响[J];中国稀土学报;2010年02期
10 闫霞艳;桑革;朱新亮;;硼氢化物吸放氢性能的研究进展[J];材料导报;2011年09期
相关会议论文 前4条
1 罗道军;胡伟康;张允什;汪根时;;非晶态M1-Ni合金薄膜吸放氢性能的研究[A];第二届中国功能材料及其应用学术会议论文集[C];1995年
2 陈玉安;林嘉靖;唐霞;;硼的添加对Mg2Ni储氢合金吸放氢性能的影响[A];2011中国材料研讨会论文摘要集[C];2011年
3 季世军;孙俊才;于志伟;黑祖昆;严立;;球磨条件对Mg_(50)Ni_(50)非晶合金的形成及电化学吸放氢性能的影响[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
4 梁斌斌;何长水;杨洪广;;CO杂质对SiO_2包覆LaNiAl合金吸放氢的影响[A];中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第4册(核材料分卷、同位素分离分卷、核化学与放射化学分卷)[C];2011年
相关博士学位论文 前4条
1 顾坚;硼氢化钙基储氢材料的吸放氢性能及其储氢机理研究[D];浙江大学;2014年
2 张健;镁及其合金氢化物吸放氢性能及电子机制研究[D];湖南大学;2009年
3 庞越鹏;铝氢化镁基储氢材料的合成、吸放氢性能及其机理[D];浙江大学;2014年
4 汤家俊;表面和界面对Mg-H体系吸放氢性能影响的理论研究[D];华南理工大学;2014年
相关硕士学位论文 前8条
1 黎伟;镁基储氢材料的改性及其性能研究[D];重庆大学;2015年
2 梁浩;V-Ti-Cr-Fe合金吸放氢性能的研究[D];四川大学;2006年
3 马俊;稀土氧化物及孔道材料改性NaAlH_4吸放氢性能的研究[D];中南大学;2011年
4 周海;LiBH_4基储氢材料的吸放氢性能及其机理[D];浙江大学;2012年
5 魏佳;微波辐射和添加剂对金属—氮—氢体系吸放氢性能的影响[D];上海大学;2014年
6 韩乐园;Mg基材料添加剂对LiBH_4配位氢化物吸放氢性能的影响机制研究[D];浙江大学;2013年
7 窦涛;Ti-V基固溶体型储氢合金吸放氢性能的研究[D];中国科学院研究生院(上海微系统与信息技术研究所);2006年
8 王丽媛;添加Y对Mg_(17)Al_(12)化合物组织和性能的影响[D];太原理工大学;2014年
,本文编号:2397993
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2397993.html